The impact of plant water uptake and recharge on groundwater level at a site in the Loess Plateau of China

2012 ◽  
Vol 44 (1) ◽  
pp. 106-116 ◽  
Author(s):  
H. Yasuda ◽  
R. Berndtsson ◽  
O. Hinokidani ◽  
J. Huang ◽  
T. Saito ◽  
...  

Shallow groundwater in unconsolidated sediments represents a substantial water resource in the Chinese Loess Plateau. However, prior to development of the water supply for agriculture, annual and seasonal fluctuation of the recharge mechanism should be clarified. Since the region is arid, the effect of plant water uptake on groundwater fluctuation must also be assessed. A study was therefore undertaken to clarify groundwater recharge together with interaction between the plant ecosystem and shallow groundwater at a field site in the Loess Plateau of China. Observations showed that recharge response of the groundwater level (GWL) was limited except for intensive rainfall during the rainy season. The main recharge to the groundwater occurred from horizontal inflow from focused recharge at the upstream end of the site. Fluctuation of the GWL produced by plant water uptake was monitored during the growing season. For seasonal fluctuation of GWL, temperature was most important, while for diurnal fluctuation of GWL during the growing season, solar radiation was most important. During the growing season, the GWL declined during the daylight hours and recovered during the night. The diurnal fluctuation was well synchronized with the solar radiation, consistent with plant-water uptake by shrubs surrounding one of the observation wells.

Soil Science ◽  
1992 ◽  
Vol 153 (2) ◽  
pp. 87-93 ◽  
Author(s):  
P. MOLDRUP ◽  
D. E. ROLSTON ◽  
J. AA. HANSEN ◽  
T. YAMAGUCHI

Author(s):  
Kei NAKAGAWA ◽  
Yoshiyuki NAGAURA ◽  
Tosao HOSOKAWA ◽  
Masahiko SAITO ◽  
Hiroshi YASUDA

1983 ◽  
Vol 26 (1) ◽  
pp. 0087-0091 ◽  
Author(s):  
Ernest W. Tollner ◽  
Fred J. Molz

2006 ◽  
Vol 33 (3) ◽  
Author(s):  
Adriaan J. Teuling ◽  
Remko Uijlenhoet ◽  
François Hupet ◽  
Peter A. Troch

2014 ◽  
Vol 164 (4) ◽  
pp. 1619-1627 ◽  
Author(s):  
Guillaume Lobet ◽  
Valentin Couvreur ◽  
Félicien Meunier ◽  
Mathieu Javaux ◽  
Xavier Draye

Oikos ◽  
2019 ◽  
Vol 128 (12) ◽  
pp. 1748-1760 ◽  
Author(s):  
Kimberly O'Keefe ◽  
Jesse B. Nippert ◽  
Katherine A. McCulloh

2020 ◽  
Vol 170 (3) ◽  
pp. 433-439
Author(s):  
Ana I. Vargas ◽  
Bruce Schaffer ◽  
Leonel da S. L. Sternberg

2020 ◽  
Author(s):  
Weidong Guo ◽  
Andrew Pitman ◽  
Jun Ge ◽  
Beilei Zan ◽  
Congbin Fu

<p>To resolve a series of ecological and environmental problems over the Loess Plateau, the was initiated at the end of 1990s. Following the conversion of croplands and bare land on hillslopes to forests, the Loess Plateau has displayed a significant greening trend with soil erosion being reduced. However, the GFGP has also affected the hydrology of the Loess Plateau which has raised questions whether the GFGP should be continued in the future. We investigated the impact of revegetation on the hydrology of the Loess Plateau using high resolution simulations and multiple realisations with the Weather Research and Forecasting (WRF) model. Results suggests that land cover change since the launch of the GFGP has reduced runoff and soil moisture due to enhanced evapotranspiration. Further revegetation associated with the GFGP policy is likely to increase evapotranspiration further, and thereby reduce runoff and soil moisture. The increase in evapotranspiration is associated with biophysical changes, including deeper roots that deplete deep soil moisture stores. However, despite the increase in evapotranspiration our results show no impact on rainfall. Our study cautions against further revegetation over the Loess Plateau given the reduction in water available for agriculture and human settlements, without any significant compensation from rainfall.</p>


Sign in / Sign up

Export Citation Format

Share Document