diversity gradient
Recently Published Documents


TOTAL DOCUMENTS

235
(FIVE YEARS 84)

H-INDEX

41
(FIVE YEARS 6)

Author(s):  
Maya Rocha ◽  
Freddy Palacino ◽  
Pilar Rodríguez ◽  
Alex Córdoba-Aguilar

1. Latitudinal diversity gradient (LDG) is the increase in species richness towards the equator and is one of the most consistent patterns in biogeography, where current and historical processes contribute to shape the pattern. 2. Despite that LDG patterns have been described for some insects, the underlying mechanisms associated with community assembly and diversification along modern latitudinal diversity gradient pattern remain unknowledge for many groups. 3. Odonata is an old order of insects that originated during the Carboniferous and has diversified through different eras. Here, we defined co-occurrence based on the presence in ecoregions and 1°×1° grid cells of Odonata species in North America NA, to address their species richness, phylogenetic structure, and species diversification rate along the latitudinal gradient. 4. For the whole order, we found the highest species richness at mid-latitudes, while phylogenetic diversity showed a linear positive pattern along the gradient. Our results showed dragonfly assemblages were clustered along all the gradient, suggesting that environmental filtering sorted the assemblages. Whereas damselfly species assemblages were clustered at mid-latitude and overdispersed into both extremes of gradient, probably community assembly is driving by thermal gradients at mid-latitude, by competitive exclusion at south extreme, and by different origins of the biota at the boreal zone. Our results show that apparently most ancestral lineages of Odonata inhabit tropical zones, where diversified and dispersed to the temperate region, although likely also have been diversified into regions of NA, which might be linked with the highest species richness at mid-latitude for both suborders.


Zootaxa ◽  
2021 ◽  
Vol 5060 (3) ◽  
pp. 301-332
Author(s):  
PAULA NILDA FERGNANI ◽  
ADRIANA RUGGIERO

We evaluate the role of biogeographical affinity in shaping relationships between ecological diversity as a proxy of functional diversity and phylogenetic diversity and their association with environmental variation, across tropical and temperate latitudes of the Americas. If environmental niches are evolutionarily conserved, high mammal taxa of tropical and temperate affinity will show consistent differences in these relationships. Accordingly, mammal groups of tropical affinity (old-autochthonous: marsupials and xenarthrans; and mid-Cenozoic immigrants: hystricognaths and primates) show stronger positive correlations between ecological and phylogenetic diversity within the tropics than those from extra-tropical latitudes where newcomers from North America (artiodactyls) show the strongest positive correlations. The other group of newcomers (carnivorans), however, show a peak in the association that include both tropical and extra-tropical latitudes of South America. Climate predominates over topographic relief in structuring the spatial variation of ecological and phylogenetic mammal diversity. The environmental structuring of ecological and phylogenetic mammal diversity across the Americas is more complex than expected from a latitudinal diversity gradient. Dry seasonal tropical habitats generated considerable heterogeneity in relationships between ecological and phylogenetic diversity and their association with environmental correlates. We conclude that biogeographical affinity and regional associations between the different components of diversity and the environment should be considered for a comprehensive explanation of covariation between ecological and phylogenetic diversity on a continental scale.  


2021 ◽  
Vol 288 (1961) ◽  
Author(s):  
V. Parravicini ◽  
M. G. Bender ◽  
S. Villéger ◽  
F. Leprieur ◽  
L. Pellissier ◽  
...  

Coral reefs are experiencing declines due to climate change and local human impacts. While at a local scale these impacts induce biodiversity loss and shifts in community structure, previous biogeographical analyses recorded consistent taxonomic structure of fish communities across global coral reefs. This suggests that regional communities represent a random subset of the global species and traits pool, whatever their species richness. Using distributional data on 3586 fish species and latest advances in species distribution models, we show marked gradients in the prevalence of size classes and diet categories across the biodiversity gradient. This divergence in trait structure is best explained by reef isolation during past unfavourable climatic conditions, with large and piscivore fishes better represented in isolated areas. These results suggest the risk of a global community re-organization if the ongoing climate-induced reef fragmentation is not halted.


Author(s):  
Marcela Sofía Vaca-Sánchez ◽  
Yurixhi Maldonado-López ◽  
Antonio González-Rodríguez ◽  
Ken Oyama ◽  
G. Wilson Fernandes ◽  
...  

2021 ◽  
Author(s):  
Sytske M. Drost ◽  
Annemieke van der Wal ◽  
Wietse de Boer ◽  
Paul. L.E. Bodelier

AbstractFungi play an important role in carbon - and nutrient cycling. It is, however, unclear if diversity of fungi is essential to fulfill this role. With this meta-analysis, we aim to understand the relationship between fungal diversity and decomposition of plant materials (leaf litter and wood) in terrestrial and aquatic environments. The selection criteria for papers were the presence of a fungal diversity gradient and quantification of decomposition as mass loss. In total 40 papers met the selection criteria. We hypothesized that increase of fungal species will result in stronger decomposition, especially in species poor communities. Both artificial inoculated and naturally assembled fungal communities were included in the analysis in order to assess whether manipulated experiments are representative for field situations. We found a significant positive effect of increased fungal diversity on decomposition. However, in manipulated experiments this relationship was only positive when a control treatment of one fungus was compared with multispecies communities. This relationship became negative when comparisons of higher initial richness (at least two fungal species as “control”) were included. In contrast, under natural field conditions increased fungal diversity coincided with increased decomposition. This suggests that manipulated experiments are not representative for field situations. Possible reasons for this are discussed. Yet, both in manipulated and field experiments, environmental factors can influence diversity – decomposition relationships as indicated by a negative relationship of increasing C:N ratio on the effect of fungal diversity on decomposition. Overall, our results show that fungal diversity can have an important role in decomposition, but that design of experiments (manipulated or field) and quality of the plant material should be taken into account for interpretation of this diversity-functioning relationship.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nicolas Chazot ◽  
Fabien L. Condamine ◽  
Gytis Dudas ◽  
Carlos Peña ◽  
Ullasa Kodandaramaiah ◽  
...  

AbstractThe global increase in species richness toward the tropics across continents and taxonomic groups, referred to as the latitudinal diversity gradient, stimulated the formulation of many hypotheses to explain the underlying mechanisms of this pattern. We evaluate several of these hypotheses to explain spatial diversity patterns in a butterfly family, the Nymphalidae, by assessing the contributions of speciation, extinction, and dispersal, and also the extent to which these processes differ among regions at the same latitude. We generate a time-calibrated phylogeny containing 2,866 nymphalid species (~45% of extant diversity). Neither speciation nor extinction rate variations consistently explain the latitudinal diversity gradient among regions because temporal diversification dynamics differ greatly across longitude. The Neotropical diversity results from low extinction rates, not high speciation rates, and biotic interchanges with other regions are rare. Southeast Asia is also characterized by a low speciation rate but, unlike the Neotropics, is the main source of dispersal events through time. Our results suggest that global climate change throughout the Cenozoic, combined with tropical niche conservatism, played a major role in generating the modern latitudinal diversity gradient of nymphalid butterflies.


2021 ◽  
Vol 376 (1837) ◽  
pp. 20200365 ◽  
Author(s):  
Robert Poulin

Functional biogeography, or the study of trait-based distributional patterns, not only complements our understanding of spatial patterns in biodiversity, but also sheds light on the underlying processes generating them. In parallel with the well-studied latitudinal diversity gradient, decades-old ecogeographical rules also postulate latitudinal variation in species traits. Notably, species in the tropics are predicted to have smaller body sizes (Bergmann's rule), narrower niches (MacArthur's rule) and smaller geographical ranges (Rapoport's rule) than their counterparts at higher latitudes. Although originally proposed for free-living organisms, these rules have been extended to parasitic organisms as well. In this review, I discuss the mechanistic hypotheses most likely to explain latitudinal gradients in parasite traits, and assess the empirical evidence obtained from comparative studies testing the above three rules as well as latitudinal gradients in other parasite traits. Overall, there is only weak empirical support for latitudinal gradients in any parasite trait, with little consistency among comparative analyses. The most parsimonious explanation for the existence of geographical patterns in parasite traits is that they are primarily host-driven, i.e. ecological traits of parasites track those of their hosts, with a direct influence of bioclimatic factors playing a secondary role. Thus, geographical patterns in parasite traits probably emerge as epiphenomena of parallel patterns in their hosts. This article is part of the theme issue ‘Infectious disease macroecology: parasite diversity and dynamics across the globe’.


Author(s):  
Phillip L. Martin ◽  
William King ◽  
Terrence H Bell ◽  
Kari Peter

Bitter rot is a disease of apple caused by fungi in the genus Colletotrichum. Management begins with removal of infected twigs and fruits from tree canopies to reduce overwintering inoculum. Infected apples are usually tossed to the orchard floor, which is generally managed as herbicide-treated weed-free tree rows, separated by grass drive rows. We monitored decay rates and succession of fungi of apples with bitter rot in tree canopies, and on the soil surface in tree rows, grass drive rows, and nearby diverse plant communities. We hypothesized that decay would occur most rapidly within diverse plant communities, which would provide a more diverse array of potential fungal decomposers. Apples in tree canopies became dry and mummified and had more Colletotrichum gene marker copies the following growing season than did apples on the soil surface. Of the soil surface samples, those in grass drive rows and diverse plant communities had higher moisture, faster decay rates, and sharper decreases in Colletotrichum gene marker copies than apples in tree rows. Fungal composition across all decaying apples was dominated by yeasts, with higher genus-level richness, diversity, and evenness in apples from tree canopies than those on the soil surface. In soil surface apples, we observed clear successional waves of Pichia, Kregervanrija, and [Candida] yeasts, with similar but distinctly diverging fungal composition. Our results show that orchard floor management can influence fungal succession in apples with bitter rot, but suggests that bitter rot management should primarily focus on removing infected apples from tree canopies.


PLoS Biology ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. e3001368
Author(s):  
Daniel L. Rabosky

An influential hypothesis proposes that the tempo of evolution is faster in the tropics. Emerging evidence, including a study in this issue of PLOS Biology, challenges this view, raising new questions about the causes of Earth’s iconic latitudinal diversity gradient (LDG).


Sign in / Sign up

Export Citation Format

Share Document