scholarly journals Evaluating the impacts of environmental factors on soil moisture temporal dynamics at different time scales

Author(s):  
Qi Chai ◽  
Tiejun Wang ◽  
Chongli Di

Abstract Soil moisture displays complex spatiotemporal patterns across scales, making it important to disentangle the impacts of environmental factors on soil moisture temporal dynamics at different time scales. This study evaluated the factors affecting soil moisture dynamics at different time scales using long-term soil moisture data obtained from Nebraska and Utah. The empirical mode decomposition method was employed to decompose soil moisture time series into different temporal components with several intrinsic mode functions (IMFs) and one residual component. Results showed that the percent variance contribution (PVC) of IMFs to the total soil moisture temporal variance tended to increase for the IMFs with longer time periods. It indicated that the long-term soil moisture variations in study regions were mainly determined by low-temporal frequency signals related to seasonal climate and vegetation variations. Besides, the PVCs at short- and medium-temporal ranges were positively correlated with climate dryness, while negatively at longer temporal ranges. Moreover, the results suggested that the impact of climate on soil moisture dynamics at different time scales might vary across different climate zones, while soil effect was comparatively less in both regions. It provides additional insights into understanding soil moisture temporal dynamics in regions with contrasting climatic conditions.

mSystems ◽  
2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Giulia T. Uhr ◽  
Lenka Dohnalová ◽  
Christoph A. Thaiss

ABSTRACT The intestinal microbiota contains trillions of commensal microorganisms that shape multiple aspects of host physiology and disease. In contrast to the host’s genome, the microbiome is amenable to change over the course of an organism’s lifetime, providing an opportunity to therapeutically modulate the microbiome’s impact on human pathophysiology. In this Perspective, we highlight environmental factors that regulate the temporal dynamics of the intestinal microbiome, with a particular focus on the different time scales at which they act. We propose that the identification of transient and intermediate states of microbiome responses to perturbations is essential for understanding the rules that govern the behavior of this ecosystem. The delineation of microbiome dynamics is also helpful for distinguishing cause and effect in microbiome responses to environmental stimuli. Understanding the dimension of time in host-microbiome interactions is therefore critical for therapeutic strategies that aim at short-term or long-term engineering of the intestinal microbial community.


2016 ◽  
Vol 43 (16) ◽  
pp. 8554-8562 ◽  
Author(s):  
Nadine Nicolai‐Shaw ◽  
Lukas Gudmundsson ◽  
Martin Hirschi ◽  
Sonia I. Seneviratne

2016 ◽  
Author(s):  
C. Fu ◽  
G. Wang ◽  
M. L. Goulden ◽  
R. L. Scott ◽  
K. Bible ◽  
...  

Abstract. Effects of hydraulic redistribution (HR) on hydrological, biogeochemical, and ecological processes have been demonstrated in the field, but the current generation of standard earth system models does not include a representation of HR. Though recent studies have examined the effect of incorporating HR into land surface models, few (if any) has tackled the magnitude of the HR flux itself or the soil moisture dynamics from which HR magnitude can be directly inferred. Here we incorporated Ryel et al.'s (2002) empirical equation describing HR into the NCAR Community Land Model Version 4.5 (CLM4.5), and examined the ability of the resulting hybrid model to capture the magnitude of HR flux and/or soil moisture dynamics from which HR can be directly inferred, to assess the impact of HR on surface water and energy budgets, and to explore how it may depend on climate regimes and vegetation conditions. Eight AmeriFlux sites characterized by contrasting climate regimes and multiple vegetation types were studied, including the US-Wrc Wind River Crane site in Washington State, the US-SRM Santa Rita Mesquite Savanna site in southern Arizona, and six sites along the Southern California Climate Gradient (US-SCs, g, f, w, c, and d). HR flux, evapotranspiration, and soil moisture were properly simulated in the present study, even in the face of various uncertainties. Our cross-ecosystem comparison showed that the timing, magnitude, and direction (upward or downward) of HR vary across ecosystems, and incorporation of HR into CLM4.5 improved the model-measurement match particularly during dry seasons. Our results also reveal that HR has important hydrological impact (on evapotranspiration, Bowen ratio, and soil moisture) in ecosystems that have a pronounced dry season but are not overall so dry that sparse vegetation and very low soil moisture limit HR.


2014 ◽  
Vol 11 (7) ◽  
pp. 8803-8844 ◽  
Author(s):  
F. Ries ◽  
J. Lange ◽  
S. Schmidt ◽  
H. Puhlmann ◽  
M. Sauter

Abstract. Knowledge of soil moisture dynamics in the unsaturated soil zone provides valuable information on the temporal and spatial variability of groundwater recharge. This is especially true for the Mediterranean region, where a substantial fraction of long-term groundwater recharge is expected to occur during high magnitude precipitation events of above-average wet winters. To elucidate process understanding of infiltration processes during these extreme events, a monitoring network of precipitation gauges, meteorological stations, and soil moisture plots was installed in an area with a steep climatic gradient in the Jordan Valley region. In three soil moisture plots, Hydrus-1D was used to simulate water movement in the unsaturated soil zone with soil hydraulic parameters estimated by the Shuffled Complex Evolution Metropolis algorithm. To generalize our results, we modified soil depth and rainfall input to simulate the effect of the pronounced climatic gradient and soil depth variability on percolation fluxes and applied the calibrated model to a time series with 62 years of meteorological data. Soil moisture measurements showed a pronounced seasonality and suggested rapid infiltration during heavy rainstorms. Hydrus-1D successfully simulated short and long-term soil moisture patterns, with the majority of simulated deep percolation occurring during a few intensive rainfall events. Temperature drops in a nearby groundwater well were observed synchronously with simulated percolation pulses, indicating rapid groundwater recharge mechanisms. The 62 year model run yielded annual percolation fluxes of up to 66% of precipitation depths during wet years and of 0% during dry years. Furthermore, a dependence of recharge on the temporal rainfall distribution could be shown. Strong correlations between depth of recharge and soil depth were also observed.


2012 ◽  
Vol 26 (3) ◽  
pp. 301-309 ◽  
Author(s):  
C. Sławiński ◽  
J. Cymerman ◽  
B. Witkowska-Walczak ◽  
K. Lamorski

Impact of diverse tillage on soil moisture dynamicsThe influences of traditional and reduced tillage on the water content dynamics of two soils were investigated in a long-term field experiment under nearly the same meteorological conditions for a winter wheat monoculture during three years. In addition to the moisture changes, the basic physicochemical properties, water retention, differential porosity and hydraulic conductivity of the investigated soils were measured. The results have shown the dependence between moisture and the tillage system applied for both types of soil. The soil water content was higher under reduced tillage in comparison to traditional management.


2015 ◽  
Vol 19 (3) ◽  
pp. 1439-1456 ◽  
Author(s):  
F. Ries ◽  
J. Lange ◽  
S. Schmidt ◽  
H. Puhlmann ◽  
M. Sauter

Abstract. Knowledge of soil moisture dynamics in the unsaturated soil zone provides valuable information on the temporal and spatial variability of groundwater recharge. This is especially true for the Mediterranean region, where a substantial fraction of long-term groundwater recharge is expected to occur during high magnitude precipitation events of above-average wet winters. To elucidate process understanding of infiltration processes during these extreme events, a monitoring network of precipitation gauges, meteorological stations, and soil moisture plots was installed in an area with a steep climatic gradient in the Jordan Valley region. In three soil moisture plots, Hydrus-1D was used to simulate water movement in the unsaturated soil zone with soil hydraulic parameters estimated by the Shuffled Complex Evolution Metropolis algorithm. To generalize our results, we modified soil depth and rainfall input to simulate the effect of the pronounced climatic gradient and soil depth variability on percolation fluxes and applied the calibrated model to a time series with 62 years of meteorological data. Soil moisture measurements showed a pronounced seasonality and suggested rapid infiltration during heavy rainstorms. Hydrus-1D successfully simulated short and long-term soil moisture patterns, with the majority of simulated deep percolation occurring during a few intensive rainfall events. Temperature drops in a nearby groundwater well were observed synchronously with simulated percolation pulses, indicating rapid groundwater recharge mechanisms. The 62-year model run yielded annual percolation fluxes of up to 66% of precipitation depths during wet years and of 0% during dry years. Furthermore, a dependence of recharge on the temporal rainfall distribution could be shown. Strong correlations between depth of recharge and soil depth were also observed.


2018 ◽  
Vol 123 (17) ◽  
pp. 8936-8948 ◽  
Author(s):  
Shi shen ◽  
Sijing Ye ◽  
Changxiu Cheng ◽  
Changqing Song ◽  
Jianbo Gao ◽  
...  

GPS Solutions ◽  
2015 ◽  
Vol 20 (4) ◽  
pp. 641-654 ◽  
Author(s):  
Sibylle Vey ◽  
Andreas Güntner ◽  
Jens Wickert ◽  
Theresa Blume ◽  
Markus Ramatschi

2010 ◽  
Vol 14 (6) ◽  
pp. 873-889 ◽  
Author(s):  
E. Zehe ◽  
T. Graeff ◽  
M. Morgner ◽  
A. Bauer ◽  
A. Bronstert

Abstract. This study presents an application of an innovative sampling strategy to assess soil moisture dynamics in a headwater of the Weißeritz in the German eastern Ore Mountains. A grassland site and a forested site were instrumented with two Spatial TDR clusters (STDR) that consist of 39 and 32 coated TDR probes of 60 cm length. Distributed time series of vertically averaged soil moisture data from both sites/ensembles were analyzed by statistical and geostatistical methods. Spatial variability and the spatial mean at the forested site were larger than at the grassland site. Furthermore, clustering of TDR probes in combination with long-term monitoring allowed identification of average spatial covariance structures at the small field scale for different wetness states. The correlation length of soil water content as well as the sill to nugget ratio at the grassland site increased with increasing average wetness and but, in contrast, were constant at the forested site. As soil properties at both the forested and grassland sites are extremely variable, this suggests that the correlation structure at the forested site is dominated by the pattern of throughfall and interception. We also found a very strong correlation between antecedent soil moisture at the forested site and runoff coefficients of rainfall-runoff events observed at gauge Rehefeld. Antecedent soil moisture at the forest site explains 92% of the variability in the runoff coefficients. By combining these results with a recession analysis we derived a first conceptual model of the dominant runoff mechanisms operating in this catchment. Finally, we employed a physically based hydrological model to shed light on the controls of soil- and plant morphological parameters on soil average soil moisture at the forested site and the grassland site, respectively. A homogeneous soil setup allowed, after fine tuning of plant morphological parameters, most of the time unbiased predictions of the observed average soil conditions observed at both field sites. We conclude that the proposed sampling strategy of clustering TDR probes is suitable to assess unbiased average soil moisture dynamics in critical functional units, in this case the forested site, which is a much better predictor for event scale runoff formation than pre-event discharge. Long term monitoring of such critical landscape elements could maybe yield valuable information for flood warning in headwaters. We thus think that STDR provides a good intersect of the advantages of permanent sampling and spatially highly resolved soil moisture sampling using mobile rods.


PLoS ONE ◽  
2016 ◽  
Vol 11 (10) ◽  
pp. e0164982 ◽  
Author(s):  
Bonan Li ◽  
Lixin Wang ◽  
Kudzai F. Kaseke ◽  
Lin Li ◽  
Mary K. Seely

Sign in / Sign up

Export Citation Format

Share Document