intestinal microbial community
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 29)

H-INDEX

14
(FIVE YEARS 4)

2021 ◽  
Vol 204 (1) ◽  
Author(s):  
Jun-peng Li ◽  
Qi-fan Wu ◽  
Sheng-chao Ma ◽  
Jian-mei Wang ◽  
Bin Wei ◽  
...  

2021 ◽  
Vol 9 (3) ◽  
Author(s):  
Xue Zhu ◽  
Gaichao Hong ◽  
Ying Li ◽  
Pengshuo Yang ◽  
Mingyue Cheng ◽  
...  

Microbial community varied from one site to another along the gastrointestinal tract, but current studies about intestinal microbial community in IBS-D were mainly based on fecal samples. Based on 283 intestinal samples collected from DM, DL, RM, and RL of HC and IBS-D, we found different intestinal sites had their site-specific microbial patterns in IBS-D.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chun Wang ◽  
Zixi Yuan ◽  
Yingxue Sun ◽  
Xiaolong Yao ◽  
Ruixuan Li ◽  
...  

The ever-increasing production and processing of textiles will lead to greater risks of releasing pollutants into the environment. Textile wastewater treatment plants (TWTPs) effluent are an important source of persistent toxic pollutants in receiving water bodies. The effects of specific pollutants on organisms are usually studied under laboratory conditions, and therefore, comprehensive results are not obtained regarding the chronic combined effects of pollutants under aquatic environmental conditions. Thus, this study aimed to determine the combined effects of TWTP effluents on the growth performance, oxidative stress, inflammatory response, and intestinal microbiota of adult zebrafish (Danio rerio). Exposure to TWTP effluents significantly inhibited growth, exacerbated the condition factor, and increased the mortality of adult zebrafish. Moreover, markedly decreases were observed in the activities of antioxidant enzymes, such as CAT, GSH, GSH-Px, MDA, SOD, and T-AOC, mostly in the intestine and muscle tissues of zebrafish after 1 and 4 months of exposure. In addition, the results demonstrated that TWTP effluent exposure affected the intestinal microbial community composition and decreased community diversity. Slight changes were found in the relative abundance of probiotic Lactobacillus, Akkermansia, and Lactococcus in zebrafish guts after chronic TWTP effluent exposure. The chronic toxic effects of slight increases in opportunistic pathogens, such as Mycoplasma, Stenotrophomonas, and Vibrio, deserve further attention. Our results reveal that TWTP effluent exposure poses potential health risks to aquatic organisms through growth inhibition, oxidative stress impairment of the intestine and muscles, and intestinal microbial community alterations.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ying Wang ◽  
Zhenfang Li ◽  
Lanting Ma ◽  
Guilin Li ◽  
Kai Han ◽  
...  

The intestinal microbial community composition of different bee species typically has host specificity, yet little is known about the underlying formation mechanism. There are signs that dietary habits vary in different bee species, suggesting that there may be close relationships between dietary habits and intestinal microorganisms. We explored this hypothesis by comparing the dietary habits and gut microbiota of two common bee species (Apis mellifera L. and Apis cerana cerana) in China. Bee bread and midgut samples from wild and laboratory-reared bees were collected, and the differences in intestinal microbial community composition and growth and development before and after the change in dietary habits of different bee species were compared. We found that the two sympatric species had different dietary specializations and similar metagenomic diversities. The microbiota composition differed between the two species. Moreover, we revealed that changes in native dietary habits destroyed the intestinal microbiota community composition, negatively affecting the growth and development of honeybees.


2021 ◽  
Vol 160 (6) ◽  
pp. S-133
Author(s):  
Kevin Jiang ◽  
Yu-Ling Chang ◽  
Gregory J. Botwin ◽  
Dalin Li ◽  
Jason Lloyd-Price ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Yong Ma ◽  
Gang Liu ◽  
Muyang Tang ◽  
Jun Fang ◽  
Hongmei Jiang

Epigallocatechin gallate (EGCG) has potent biological activity as well as strong antioxidant and anti-inflammatory effects. This study aims to explore the protective effect of EGCG on LPS-induced acute injury. We randomly divided 18 mice into three groups: CON, LPS, and EGCG-LPS. We gave the EGCG-LPS group gavage treatment with EGCG on day 8–15 and an intraperitoneal injection of LPS on day 16 to induce acute injury. The results showed that, compared with the LPS group, the bodyweight of the mice in the EGCG-LPS group increased significantly and effectively inhibited the morphological damage of the jejunum and liver. We measured liver tissue and found that the EGCG gavage treatment significantly inhibited the pro-inflammatory factors (TNF-α, IL-1β, IL-6, MCP-1, MIP-2, IFN-γ) and oxidation indicators (MPO, NO, ALT, and AST) levels increase. The microbiological results showed that the EGCG gavage treatment reshaped the disturbance done to the intestinal microbial community in the mice by LPS, reversed the changes in the abundance ratio of Firmicutes/Bacteroidetes, and significantly reduced the abundance of Enterobacteriales. Finally, the serum metabolomics results showed that, when compared with the LPS group, the gavage treatment of EGCG significantly increased the concentration of sphingomyelin (d17:1/17:0), sphingomyelin (d16:1/20:0), and significantly reduced the content of trans-Hexadec-2-enoyl carnitine, and so on. Therefore, we believe that EGCG can protect mice from acute stress induced by LPS while stabilizing gut microbes in general, improving the metabolism of sphingolipids, and inhibiting the content of harmful metabolites.


Elem Sci Anth ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Yuxuan Wang ◽  
Yuting Zhou ◽  
Xudong Wei ◽  
Yuxuan Chen ◽  
Jingzi Beiyuan ◽  
...  

Thallium (Tl) is a highly toxic trace metal widely distributed in water environments, which may threaten the water quality and aquatic organisms at excessive levels due to increased anthropogenic activities. This study investigated the changes in microbial communities of intestines and organs of zebrafish. The toxic response assessments include intestinal microbiota composition and the histopathology of zebrafish’s gill and liver tissues under exposure of Tl at environmental-relevant levels. The results support that the intestinal microbial community of zebrafish greatly changed under a relatively high Tl concentration (1000 ng/L). A significant increase of pathogenic intestinal bacteria such as Mycobaterium in the intestine of zebrafish exposed at Tl levels over 500 ng/L was found. Additionally, the gill and liver tissues displayed different degrees of damage under Tl exposure, which possibly leads to mating behavior changes and death of zebrafish. The results indicate that low doses of Tl in the aquatic environment induce high toxicity on zebrafish and may pose pathological threats to the gill and liver of zebrafish. In addition, Tl exposure gives rise to increasing abundance of pathogenic intestinal bacteria and changes the community structure of intestinal microorganisms.


Sign in / Sign up

Export Citation Format

Share Document