scholarly journals Method to identify composition and production phases of spring runoff in high-latitude mid-temperate regions: a case study in the Second Songhua River Basin, China

Author(s):  
Yangzong Cidan ◽  
Hongyan Li ◽  
Wei Yang ◽  
Lin Tian

Abstract Simulation and forecasting of runoff play an important role in the early warning and prevention of drought and flood disasters. To improve the accuracy of spring runoff simulations, it is important to identify spring runoff production patterns under the combined effect of snow and frozen soil. Based on the theory of the hydrological cycle, three important parameters, which include surface and subsurface runoff, precipitation and temperature, were selected for this study. The trend analysis, statistical analysis and Eckhardt's recursive numerical filtering method were used to qualitatively identify the production patterns of spring runoff, the start and end dates and stage periods of the production patterns. Based on the qualitative identification results, the contribution of each production runoff to the total annual runoff and the total annual spring runoff is quantitatively assessed. The results of the study show that the spring runoff production patterns in the Second Songhua River Basin can be divided into snowmelt runoff, frozen soil conditions of snowmelt–rainfall runoff and rainfall runoff under frozen soil conditions; the snowmelt production is from 21 March, the frozen soil conditions production is from 21 April and the frozen soil ablation ended on 15 June; the shortest phases of each production pattern last 28, 20 and 18 days and the longest last 31, 26 and 24 days. This research provides the basis for improving the principles of production runoff calculation in spring runoff simulation methods.

Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2659
Author(s):  
Bao Shanshan ◽  
Yang Wei ◽  
Wang Xiaojun ◽  
Li Hongyan

In the past several decades, climate change and human activities have influenced hydrological processes, and potentially caused more frequent and extensive flood and drought risks. Therefore, identification and quantification of the driving factors of runoff variation have become a hot research area. This paper used the trend analysis method to show that runoff had a significant downward trend during the past 60 years in the Second Songhua River Basin (SSRB) of Northeast China. The upper, middle, and lower streams of five hydrological stations were selected to analyze the breakpoint of the annual runoff in the past 60 years, and the breakpoints were used to divide the entire study period into two sub-periods (1956–1974 and 1975–2015). Using the water–energy coupling balance method based on Choudhury–Yang equation, the climatic and catchment landscape elasticity coefficient of the annual runoff change was estimated, and attribution analysis of the runoff change was carried out for the Fengman Reservoir and Fuyu stations in SSRB. The change in potential evapotranspiration has a weak effect on the runoff, and change in precipitation and catchment landscape were the leading factors affecting runoff. Impacts of climate change and land cover change were accountable for the runoff decrease by 80% and 11% (Fengman), 17% and 206% (Fuyu) on average, respectively; runoff was more sensitive to climate change in Fengman, and was more sensitive to catchment landscape change in Fuyu. In Fengman, the population was small, owing to the comparatively inhospitable natural conditions, and so human activities were low. However, in Fuyu, human activities were more intensive, and so had more impact on runoff for the Lower Second Songhua River compared to the Upper Second Songhua River.


2020 ◽  
Vol 51 (5) ◽  
pp. 1009-1022
Author(s):  
Jie Li ◽  
Wei Dai ◽  
Yang Sun ◽  
Yihui Li ◽  
Guoqiang Wang ◽  
...  

Abstract Runoff patterns are crucial to determine the hydrological response to climate change, especially in a seasonal frost area. In this study, multi-time runoff responses to meteoric precipitation for the period from July 2014 to June 2016 and the period from 1955 to 2010 were obtained to identify different runoff patterns in the Songhua River basin, northeast China, based on six stations. Two distinctly different runoff responses are exhibited: a periodic one in response to precipitation in the Nen River and a constant one in the Second Songhua River under different scales. Stable isotopes in the plain with diverse characteristics also supported these runoff patterns. What is more, gradual runoff relatively less sensitive to precipitation in the Second Songhua Rive was attributed to upstream dam constructions. Furthermore, the Second Songhua River contributes more water to the main stream during January to March at the seasonal scale and in the 2000s at the annual scale, with low precipitation during those periods. This study could have implications for water management in the Songhua River basin.


2019 ◽  
Vol 78 (1) ◽  
pp. 1-19 ◽  
Author(s):  
MA Faiz ◽  
D Liu ◽  
Q Fu ◽  
F Baig ◽  
AA Tahir ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document