scholarly journals Improved methods for modelling drinking water treatment in quantitative microbial risk assessment; a case study of Campylobacter reduction by filtration and ozonation

2008 ◽  
Vol 6 (3) ◽  
pp. 301-314 ◽  
Author(s):  
P. W. M. H. Smeets ◽  
Y. J. Dullemont ◽  
P. H. A. J. M. Van Gelder ◽  
J. C. Van Dijk ◽  
G. J. Medema

Quantitative microbial risk assessment (QMRA) is increasingly applied to estimate drinking water safety. In QMRA the risk of infection is calculated from pathogen concentrations in drinking water, water consumption and dose response relations. Pathogen concentrations in drinking water are generally low and monitoring provides little information for QMRA. Therefore pathogen concentrations are monitored in the raw water and reduction of pathogens by treatment is modelled stochastically with Monte Carlo simulations. The method was tested in a case study with Campylobacter monitoring data of rapid sand filtration and ozonation processes. This study showed that the currently applied method did not predict the monitoring data used for validation. Consequently the risk of infection was over estimated by one order of magnitude. An improved method for model validation was developed. It combines non-parametric bootstrapping with statistical extrapolation to rare events. Evaluation of the treatment model was improved by presenting monitoring data and modelling results in CCDF graphs, which focus on the occurrence of rare events. Apart from calculating the yearly average risk of infection, the model results were presented in FN curves. This allowed for evaluation of both the distribution of risk and the uncertainty associated with the assessment.

Risk Analysis ◽  
2009 ◽  
Vol 29 (3) ◽  
pp. 355-365 ◽  
Author(s):  
Rachael M. Jones ◽  
Yoshifumi Masago ◽  
Timothy Bartrand ◽  
Charles N. Haas ◽  
Mark Nicas ◽  
...  

2006 ◽  
Vol 5 (1) ◽  
pp. 117-128 ◽  
Author(s):  
Caroline Schönning ◽  
Therese Westrell ◽  
Thor Axel Stenström ◽  
Karsten Arnbjerg-Nielsen ◽  
Arne Bernt Hasling ◽  
...  

Dry urine-diverting toilets may be used in order to collect excreta for the utilisation of nutrients. A quantitative microbial risk assessment was conducted in order to evaluate the risks of transmission of infectious disease related to the local use of faeces as a fertiliser. The human exposures evaluated included accidental ingestion of small amounts of faeces, or a mixture of faeces and soil, while emptying the storage container and applying the material in the garden, during recreational stays to the garden, and during gardening. A range of pathogens representing various groups of microorganisms was considered. Results showed that 12-months' storage before use was sufficient for the inactivation of most pathogens to acceptable levels. When working or spending time in the garden the annual risk of infection by Ascaris was still slightly above 10-4 in these scenarios, although the incidence rate for Ascaris is very low in the population in question. Measures to further reduce the hygienic risks include longer storage, or treatment, of the faeces. The results can easily be extended to other regions with different incidence rates.


Author(s):  
Annalaura Carducci ◽  
Gabriele Donzelli ◽  
Lorenzo Cioni ◽  
Ileana Federigi ◽  
Roberto Lombardi ◽  
...  

Biological risk assessment in occupational settings currently is based on either qualitative or semiquantitative analysis. In this study, a quantitative microbial risk assessment (QMRA) has been applied to estimate the human adenovirus (HAdV) health risk due to bioaerosol exposure in a wastewater treatment plant (WWTP). A stochastic QMRA model was developed considering HAdV as the index pathogen, using its concentrations in different areas and published dose–response relationship for inhalation. A sensitivity analysis was employed to examine the impact of input parameters on health risk. The QMRA estimated a higher average risk in sewage influent and biological oxidation tanks (15.64% and 12.73% for an exposure of 3 min). Sensitivity analysis indicated HAdV concentration as a predominant factor in the estimated risk. QMRA results were used to calculate the exposure limits considering four different risk levels (one illness case per 100, 1.000, 10.000, and 100.000 workers): for 3 min exposures, we obtained 565, 170, 54, and 6 GC/m3 of HAdV. We also calculated the maximum time of exposure for each level for different areas. Our findings can be useful to better define the effectiveness of control measures, which would thus reduce the virus concentration or the exposure time.


2008 ◽  
Vol 7 (5) ◽  
pp. 525-530 ◽  
Author(s):  
Kristina D. Mena ◽  
Linda C. Mota ◽  
Mark C. Meckes ◽  
Christopher F. Green ◽  
William W. Hurd ◽  
...  

2006 ◽  
Vol 72 (5) ◽  
pp. 3284-3290 ◽  
Author(s):  
Andrew J. Hamilton ◽  
Frank Stagnitti ◽  
Robert Premier ◽  
Anne-Maree Boland ◽  
Glenn Hale

ABSTRACT Quantitative microbial risk assessment models for estimating the annual risk of enteric virus infection associated with consuming raw vegetables that have been overhead irrigated with nondisinfected secondary treated reclaimed water were constructed. We ran models for several different scenarios of crop type, viral concentration in effluent, and time since last irrigation event. The mean annual risk of infection was always less for cucumber than for broccoli, cabbage, or lettuce. Across the various crops, effluent qualities, and viral decay rates considered, the annual risk of infection ranged from 10−3 to 10−1 when reclaimed-water irrigation ceased 1 day before harvest and from 10−9 to 10−3 when it ceased 2 weeks before harvest. Two previously published decay coefficients were used to describe the die-off of viruses in the environment. For all combinations of crop type and effluent quality, application of the more aggressive decay coefficient led to annual risks of infection that satisfied the commonly propounded benchmark of ≤10−4, i.e., one infection or less per 10,000 people per year, providing that 14 days had elapsed since irrigation with reclaimed water. Conversely, this benchmark was not attained for any combination of crop and water quality when this withholding period was 1 day. The lower decay rate conferred markedly less protection, with broccoli and cucumber being the only crops satisfying the 10−4 standard for all water qualities after a 14-day withholding period. Sensitivity analyses on the models revealed that in nearly all cases, variation in the amount of produce consumed had the most significant effect on the total uncertainty surrounding the estimate of annual infection risk. The models presented cover what would generally be considered to be worst-case scenarios: overhead irrigation and consumption of vegetables raw. Practices such as subsurface, furrow, or drip irrigation and postharvest washing/disinfection and food preparation could substantially lower risks and need to be considered in future models, particularly for developed nations where these extra risk reduction measures are more common.


Sign in / Sign up

Export Citation Format

Share Document