scholarly journals Calculation of water environmental capacity of large shallow lakes – a case study of Taihu Lake

Water Policy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 223-236
Author(s):  
Kaiming Hu ◽  
Yunyan Wang ◽  
Bin Feng ◽  
Dan Wu ◽  
Yifan Tong ◽  
...  

Abstract Lake currents have an important impact on distribution of pollutant concentrations in large shallow lakes. Taking Taihu Lake as an example, in view of the characteristics of wind-driven water flow in the lake, this paper puts forward a water environmental capacity calculation method that uses wind direction and wind speed combined frequency to provide joint correction and pollution zone control for the designed hydrological conditions. In the study, the total length of the pollution belt was controlled to be 10% of the length of the study area, and a mathematical model of two-dimensional unsteady water quantity and quality in Taihu Lake was established. By analyzing the hydrological water quality characteristics and measured data of Taihu Lake in recent years, the flow field and concentration field were simulated and verified, the mathematical model and the plausibility of the parameters were calibrated. The water environmental capacity of Taihu Lake basin was calculated by this method. The calculated results showed that the water environmental capacity of chemical oxygen demand (COD), total phosphorus (TP), and total nitrogen (TN) in Taihu Lake were 113,331 t·a−1, 479 t·a−1 and 6,521 t·a−1. By providing a technical basis for total pollutant control and management in Taihu Lake basin, this study is conducive to the planning and management of water environment.

Author(s):  
Huang ◽  
Zhang ◽  
Tong

The water quality target management of the control unit is a convenient and direct technology for water environment management and the development direction of water environment management in China, involving control unit division and water environment capacity calculation. Taking the Taihu Lake Basin in Jiangsu Province as an example, we propose herein the basic principle of the division of a regional control unit in a plain river network and the method of analyzing the rationality of the control unit division. On this basis, the Taihu Lake Basin in Jiangsu Province was divided into 70 control units. To calculate the water environmental capacity in the plain river network area, we established a water environmental capacity calculation framework based on multiple targets of lakes and rivers, and proposed the goal of water quality "double compliance" of the water environmental functional zone and the assessment section. For this study, we calculated the regional water environmental capacity using the mathematical model of the Taihu Lake Basin’s water environmental capacity, and the water environmental capacities of the 70 control units were allocated by the weight coefficient method, which established water area and functional division length. The research results described herein were applied to the pollution permit management of the Taihu Lake Basin in Jiangsu Province. It provides important technical support for the establishment of a pollution permit system based on the total capacity to improve environmental quality.


2013 ◽  
Vol 23 (2) ◽  
pp. 203-215 ◽  
Author(s):  
Haixia Zhao ◽  
Bensheng You ◽  
Xuejun Duan ◽  
Stewart Becky ◽  
Xiaowei Jiang

Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3127
Author(s):  
Wei Ye ◽  
Wei Song ◽  
Chen-Feng Cui ◽  
Jia-Hao Wen

In response to the problems of large computational volume and tedious computational process of fuzzy integrated evaluation, and general neural network models without clear water quality training criteria, this paper organically combines fuzzy rules, affiliation function, and neural network, and proposes a comprehensive method for the evaluation of water quality based on a T-S fuzzy neural network. On the three water quality monitoring data of six national key monitoring stations in Taihu Lake Basin, three evaluation methods—the one-factor evaluation method, the fuzzy integrated evaluation method, and the T-S fuzzy neural network evaluation method—were used to comprehensively evaluate water environment quality, and the results showed that the T-S fuzzy neural network method has the advantages of convenient calculation, strong applicability, and scientific results.


2015 ◽  
Vol 71 (7) ◽  
pp. 1047-1055 ◽  
Author(s):  
Shenbei Zhou ◽  
Amin Du ◽  
Minghao Bai

The equitable allocation of water governance responsibilities is very important yet difficult to achieve, particularly for a basin which involves many stakeholders and policymakers. In this study, the environmental Gini coefficient model was applied to evaluate the inequality of water governance responsibility allocation, and an environmental Gini coefficient optimisation model was built to achieve an optimal adjustment. To illustrate the application of the environmental Gini coefficient, the heavily polluted transboundary Taihu Lake Basin in China, was chosen as a case study. The results show that the original environmental Gini coefficient of the chemical oxygen demand (COD) was greater than 0.2, indicating that the allocation of water governance responsibilities in Taihu Lake Basin was unequal. Of seven decision-making units, three were found to be inequality factors and were adjusted to reduce the water pollutant emissions and to increase the water governance inputs. After the adjustment, the environmental Gini coefficient of the COD was less than 0.2 and the reduction rate was 27.63%. The adjustment process provides clear guidance for policymakers to develop appropriate policies and improve the equality of water governance responsibility allocation.


2011 ◽  
Vol 347-353 ◽  
pp. 1902-1905
Author(s):  
Hua Li You

Water is the basis of natural resources and strategic economic resources.Deteriorated water environment of streams in Shenzhen city could have a great impact on ecological safety, people's health,and economic development.Based on the data of field observation and Remote sensing (RS) image,integrated analysis of the water degradation causes,and the changes of biochemical oxygen demand in five days(BOD5)concentration by mathematical model were carried out,which is on basis of percentage of waste water disposal,fresh water transformation,and harbor excavation, respectively.The results show that degradation causes of water quality were resulted from waste water discharge, harbor construction,and ecological environment damage, which could lead to slowly water exchange. Accordingly,the pollution can be easily to store in the bay,which result in water quality changes.The most important improved countermeasure is the control of waste water, which could be had a great effectiveness to decrease pollution.In addition, fresh water must be supplied after polluted water was cut off,which can be better improvement for water quality.This would be extreme improvement for hydrological dynamics due to 15m harbor excavation,which can significantly reduce BOD5 concentration.The innovation points of this paper is to mathematical model,which is based on the basis of qualitative analysis.


Sign in / Sign up

Export Citation Format

Share Document