scholarly journals Evaluation of PFCA removal by SAT using a pilot-scale reactor

2017 ◽  
Vol 12 (3) ◽  
pp. 706-716 ◽  
Author(s):  
Yugo Takabe ◽  
Fumitake Nishimura ◽  
Ryosuke Suzuki ◽  
Yasuhiro Asada ◽  
Yumeto Utsunomiya ◽  
...  

Wastewater reuse using soil aquifer treatment (SAT) is a rational and realistic solution in countries and regions with limited freshwater resources. The behaviour and removal of perfluoroalkyl carboxylic acids (PFCAs) under long hydraulic retention times (HRTs) in SAT may warrant further investigation. In this study, actual treated effluent from a wastewater treatment plant (WWTP) was continuously treated using a pilot-scale SAT reactor with a designed HRT of 30 days, located in the WWTP; PFCA removal characteristics were investigated based on a 14-month monitoring period. Continuous SAT reactor operations were accomplished for 30 months under the designed HRT (28 days, as calculated by a tracer test); stable treatments were achieved during the period, represented by dissolved organic matter removal from 3.94 mgC/L to 0.701 mgC/L. Removal of PFCAs by SAT under an HRT of 28 days was found to be difficult, as indicated by perfluorooctanoic acid level from 18.4 to 19.0 ng/L. In addition, PFCA concentrations may be increased after SAT, probably due to the influences of PFCA precursors; this is indicated by the increase in perfluorononanoic acid from 11.6 to 14.1 ng/L. Based on the guideline values, further removal of PFCAs in SAT-treated effluent may be required.

2011 ◽  
Vol 64 (12) ◽  
pp. 2500-2507 ◽  
Author(s):  
C. Caretti ◽  
E. Coppini ◽  
E. Fatarella ◽  
C. Lubello

This paper presents an experimental study aimed at estimating the efficiency of the innovative process of ultrafiltration (UF) combined with sonication (Son.) for the refinement of treated effluent to be reused in wet textile processes. Such a novel approach, which has not yet been employed on a full industrial scale, has been experienced at pilot scale on the secondary effluent of the Baciacavallo wastewater treatment plant (WWTP), which treats part of the effluent from one of the largest textile industry districts in Italy. The combined treatment efficiency was assessed both on ozonated and non-ozonated Baciacavallo secondary effluent. The membrane filtration process was optimized in terms of running time, backwash, chemical addition and cleaning procedures. The sonication treatment was optimized on laboratory-scale with synthetic solutions (demineralized water added with dyestuffs) in terms of hydroxyl radicals formation rate, frequency, acoustic power, hydrogen peroxide addition, contact time and pH. The optimal conditions have been applied on the pilot-scale sonicator which was used in combination with the UF treatment. According to the experimental results, the best configuration within the Baciacavallo WWTP was the sonication of non-ozonated wastewater followed by the UF. The combined treatment guaranteed the compliance with the target values for wastewater reuse in wet textile industries. This study is part of the Research Project PURIFAST (Purification of industrial and mixed wastewater by combined membrane filtration and sonochemical technologies) LIFE + ENV/IT/000439.


Energy ◽  
2021 ◽  
Vol 219 ◽  
pp. 119604
Author(s):  
Francesco Parrillo ◽  
Filomena Ardolino ◽  
Gabriele Calì ◽  
Davide Marotto ◽  
Alberto Pettinau ◽  
...  

2020 ◽  
Vol 6 ◽  
pp. 496-502 ◽  
Author(s):  
Mohammed El Ibrahimi ◽  
Ismail Khay ◽  
Anas El Maakoul ◽  
Mohamed Ould Moussa ◽  
Abdelwahed Barkaoui ◽  
...  

2005 ◽  
Vol 48 (spe) ◽  
pp. 243-248 ◽  
Author(s):  
Delmira Beatriz Wolff ◽  
Juan Carlos Ochoa ◽  
Etienne Paul ◽  
Rejane Helena Ribeiro da Costa

This work investigated the nitrification in a hybrid moving bed pilot scale reactor, which used a low density recycled plastic support material for biomass growth. The filling rate was 20% of its working volume (22L). The feeding and recirculation outflow was 45L/day. The reactor operated at a temperature of 16ºC, in two phases, according to the sludge retention time (SRT): A phase was 10 days and B phase was 3 days (average values). The applied average volumetric nitrogen and organic loads were 0.16KgTKN/m3.day and 1kgCOD/m³.day, respectively. The results showed an average nitrogen removal of 95% and average COD removal of 89%, in both A and B phases. Nitrogen removal rates were independents of the SRT.


Author(s):  
W A Rizal ◽  
R Maryana ◽  
D J Prasetyo ◽  
A Suwanto ◽  
S K Wahono

2017 ◽  
Vol 114 ◽  
pp. 5381-5392 ◽  
Author(s):  
Paola Librandi ◽  
Giulia Costa ◽  
Ana Carolina Bello de Souza ◽  
Stefano Stendardo ◽  
Aderval Severino Luna ◽  
...  

Chemosphere ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. 837-843 ◽  
Author(s):  
Shirish Agarwal ◽  
Phillip Cluxton ◽  
Mark Kemper ◽  
Dionysios D. Dionysiou ◽  
Souhail R. Al-Abed

Sign in / Sign up

Export Citation Format

Share Document