scholarly journals Nitrification in hybrid reactor with a recycled plastic support material

2005 ◽  
Vol 48 (spe) ◽  
pp. 243-248 ◽  
Author(s):  
Delmira Beatriz Wolff ◽  
Juan Carlos Ochoa ◽  
Etienne Paul ◽  
Rejane Helena Ribeiro da Costa

This work investigated the nitrification in a hybrid moving bed pilot scale reactor, which used a low density recycled plastic support material for biomass growth. The filling rate was 20% of its working volume (22L). The feeding and recirculation outflow was 45L/day. The reactor operated at a temperature of 16ºC, in two phases, according to the sludge retention time (SRT): A phase was 10 days and B phase was 3 days (average values). The applied average volumetric nitrogen and organic loads were 0.16KgTKN/m3.day and 1kgCOD/m³.day, respectively. The results showed an average nitrogen removal of 95% and average COD removal of 89%, in both A and B phases. Nitrogen removal rates were independents of the SRT.

2004 ◽  
Vol 49 (5-6) ◽  
pp. 155-164 ◽  
Author(s):  
U. Imajo ◽  
T. Tokutomi ◽  
K. Furukawa

Experimental studies were performed to evaluate the feasibility of granulation of Anammox microorganisms for biomass retention in up-flow reactors. Two experimental studies, one using a 6.4-L lab-scale reactor with synthetic medium and the other using a 200-L pilot-scale reactor with half-nitrified reject water from a sludge digester were conducted. To enhance the granulation process, seed granules from a UASB reactor were added to both experimental reactors. Granulation of Anammox microorganisms was observed using both the synthetic medium and the reject water. The core of a large proportion of Anammox granules retained part of the original seed biomass. The Anammox granules had a slightly lower density than the seed granules from the UASB process, but the size and other physical properties were comparable. The successful granulation of the Anammox microorganisms led to a stable nitrogen removal performance. The maximum nitrogen removal rate of the lab-scale reactor was observed to be 2.9 kg/(m3·d) after 173 days of operation and that of the pilot-scale reactor was 6.4 kg/(m3·d) after 12 months of operation.


2018 ◽  
Vol 4 (4) ◽  
pp. 569-581 ◽  
Author(s):  
Renzun Zhao ◽  
Hong Zhao ◽  
Rich Dimassimo ◽  
Guoren Xu

IFAS process was coupled with SBR operation in a pilot-scale reactor to verify the feasibility and to evaluate the performance of IFAS-SBR. Significant nitrification improvement in the IFAS-SBR system was observed, which is attributed to both the introduction of attached-growth biomass on media carriers and the “seeding effect” by biofilm sloughing.


Energy ◽  
2021 ◽  
Vol 219 ◽  
pp. 119604
Author(s):  
Francesco Parrillo ◽  
Filomena Ardolino ◽  
Gabriele Calì ◽  
Davide Marotto ◽  
Alberto Pettinau ◽  
...  

2020 ◽  
Vol 6 ◽  
pp. 496-502 ◽  
Author(s):  
Mohammed El Ibrahimi ◽  
Ismail Khay ◽  
Anas El Maakoul ◽  
Mohamed Ould Moussa ◽  
Abdelwahed Barkaoui ◽  
...  

Author(s):  
W A Rizal ◽  
R Maryana ◽  
D J Prasetyo ◽  
A Suwanto ◽  
S K Wahono

2017 ◽  
Vol 114 ◽  
pp. 5381-5392 ◽  
Author(s):  
Paola Librandi ◽  
Giulia Costa ◽  
Ana Carolina Bello de Souza ◽  
Stefano Stendardo ◽  
Aderval Severino Luna ◽  
...  

2017 ◽  
Vol 12 (3) ◽  
pp. 706-716 ◽  
Author(s):  
Yugo Takabe ◽  
Fumitake Nishimura ◽  
Ryosuke Suzuki ◽  
Yasuhiro Asada ◽  
Yumeto Utsunomiya ◽  
...  

Wastewater reuse using soil aquifer treatment (SAT) is a rational and realistic solution in countries and regions with limited freshwater resources. The behaviour and removal of perfluoroalkyl carboxylic acids (PFCAs) under long hydraulic retention times (HRTs) in SAT may warrant further investigation. In this study, actual treated effluent from a wastewater treatment plant (WWTP) was continuously treated using a pilot-scale SAT reactor with a designed HRT of 30 days, located in the WWTP; PFCA removal characteristics were investigated based on a 14-month monitoring period. Continuous SAT reactor operations were accomplished for 30 months under the designed HRT (28 days, as calculated by a tracer test); stable treatments were achieved during the period, represented by dissolved organic matter removal from 3.94 mgC/L to 0.701 mgC/L. Removal of PFCAs by SAT under an HRT of 28 days was found to be difficult, as indicated by perfluorooctanoic acid level from 18.4 to 19.0 ng/L. In addition, PFCA concentrations may be increased after SAT, probably due to the influences of PFCA precursors; this is indicated by the increase in perfluorononanoic acid from 11.6 to 14.1 ng/L. Based on the guideline values, further removal of PFCAs in SAT-treated effluent may be required.


Sign in / Sign up

Export Citation Format

Share Document