scholarly journals Minimization of greenhouse gas emissions from extended aeration activated sludge process

Author(s):  
Pelin Yapıcıoğlu

Abstract One of the greenhouse gas emissions resources is industrial wastewater treatment plants. In this study, on-site and off-site greenhouse gas emissions of an extended aeration activated sludge process in a meat processing wastewater treatment plant were estimated using a new developed approach based on the IPCC method. On-site emissions were regarded as the emissions related to the biochemical treatment process and microbial activity in the wastewater. On-site emissions were estimated from organic materials removal from wastewater and microbial mass activity. Biological oxygen demand (BOD) and chemical oxygen demand (COD) removal were considered as pollutant resources of carbon dioxide (CO2) and methane (CH4), respectively. Off-site emission was estimated from electricity consumption, chemical use and the sludge stabilization process. This paper aimed to determine and reduce on-site and off-site emissions for the extended aeration process in an industrial wastewater treatment plant. Modification of operating conditions was applied to reduce GHG emissions. The results revealed that electricity consumption was the major source of the greenhouse gas emissions for this process with a value of 6,002.77 kg CO2e/d. The minimization of total GHG emissions reached up to 17.1% by modifying the treatment process conditions.

2020 ◽  
Vol 81 (6) ◽  
pp. 1283-1295
Author(s):  
Iliana Cardenes ◽  
Jim W. Hall ◽  
Nick Eyre ◽  
Aman Majid ◽  
Simon Jarvis

Abstract Regulations to ensure adequate wastewater treatment are becoming more stringent as the negative effects of different pollutants on human health and the environment are understood. However, treatment of wastewater to remove pollutants is energy intensive, so has added significantly to the operation costs of wastewater treatment plants. Analysis from six of the largest wastewater treatment works in South East England reveals that the energy consumption of these treatment works has doubled in the last five years due to expansions to meet increasingly stringent effluent standards and population growth. This study quantifies the relationship between energy use for wastewater treatment and four measures of pollution in effluents from UK wastewater treatment works (biochemical oxygen demand, ammoniacal nitrogen, chemical oxygen demand and suspended solids). The linear regression results show that indicators of these pollutants in effluents, together with the extension of plants to improve wastewater treatment, can predict over 95% of energy consumption. Secondly, using scenarios, the energy consumption and greenhouse gas emissions of effluent quality standards are estimated. The study finds that tightening effluent standards to increase water quality could result in a doubling of electricity consumption and an increase of between 1.29 and 2.30 additional MTCO2 per year from treating wastewater in large works in the UK.


2009 ◽  
Vol 20 (4) ◽  
pp. 533-551 ◽  
Author(s):  
R Saidur ◽  
MA Sattar ◽  
H.H. Masjuki ◽  
M.Y. Jamaluddin

This paper presents an analysis of the greenhouse gas (GHG) emissions from refrigeration equipment. The refrigeration equipments use refrigerants such as chlorofluorocarbons (CFCs) and hydrofluorocarbons HFCs, which are believed to contribute the ozone depletion and global warming. Refrigeration equipment thus contributes indirectly through emission due to electricity consumption and directly due to the emission of refrigerants. Greenhouse gas emissions resulting from the burning of fossil fuels are quantified and presented in this paper. The calculation was carried out based on emissions per unit electricity generated and the type of fuel used. The direct emission of refrigerant was calculated based on emission factor and according to the procedure of Environmental Protection Agency (EPA), USA. A study was conducted to evaluate the refrigerant losses to the atmosphere and the CO2 emission from fossil fuels to generate power to run the refrigeration and air-conditioning systems. In this paper, total appliance annual energy consumption by refrigerator-freezer and air conditioner as well as emission has been estimated for a period of 19 years (1997–2015) using the survey data. Energy savings and emission reductions achievable by raising thermostat set point temperature have been calculated for a period of 10 (i.e. 2005–2015) years.


2021 ◽  
Vol 896 (1) ◽  
pp. 012054
Author(s):  
I Suryati ◽  
A Hijriani ◽  
I Indrawan

Abstract Household activities have the potential to produce greenhouse gas emissions. The government’s policy to work and study from home during the COVID-19 pandemic affects greenhouse gas emissions produced by household activities, starting from energy and waste and liquid waste produced, so it is necessary to carry out an emission inventory. The purpose of this study is to calculate greenhouse gas emissions (CO2 and CH4) from household activities in Binjai City during the COVID-19 pandemic and determine emission reduction scenarios that can be carried out in Binjai City. The calculation method used is based on the 2006 IPCC (Intergovernmental Panel in Climate Change) guidelines. CO2 emissions resulting from the use of LPG are 2025.80 tons CO2e/month, the use of fuel for daily transportation activities is 3484.84 tons CO2e/month, and electricity usage is 14956.66 Ton CO2e/month. CH4 emissions produced from domestic liquid waste are 417.14 tons CO2e/month, and household waste is 27.54 tons CO2e/month. The COVID-19 pandemic increases GHG emissions from household electricity consumption in Binjai City by ± 7% and reduces GHG emissions from fuel consumption by 3.5%.


Sign in / Sign up

Export Citation Format

Share Document