Mixing Characteristics of the Niagara River Plume in Lake Ontario

1989 ◽  
Vol 24 (1) ◽  
pp. 143-162 ◽  
Author(s):  
C. R. Murthy ◽  
K. C. Miners

Abstract Data collected between 1982 and 1985 from Lagrangian drifter experiments in which about ten drifters were tracked for ten to twelve hours from their release across the Niagara River mouth, and from concurrently taken ship-based temperature soundings at fixed grid stations off the river mouth, are used to develop a conceptual model of the mixing characteristics of the Niagara River in Lake Ontario. The data obtained suggest a three-stage mixing process. In the initial stage, the river inflow momentum dominates and the plume is well mixed vertically. In the intermediate stage, the interaction of the well mixed, buoyant river plume with colder water from deeper depths of the lake generates a sharp thermal front. In the final stage, the river plume responds to the prevailing winds and the general circulation of the lake. The correlation between these observed plume characteristics and the distribution of toxic contaminants such as mercury and mirex in Lake Ontario sediments attributed to Niagara River outflow is illustrated.

1991 ◽  
Vol 48 (8) ◽  
pp. 1558-1567 ◽  
Author(s):  
Thomas F. Nalepa

The benthic macroinvertebrate community of Lake Ontario was examined relative to communities found in the other Great Lakes and also relative to trends over time. In the nearshore, populations are heavily influenced by municipal and industrial inputs. For example, oligochaete abundances in the nearshore are higher than in any of the other Great Lakes (excluding shallow Lake Erie), communities have been altered even to relatively deep depths near the major river mouths, and the pollution-sensitive Pontoporeia hoyi is scarce along the southern shoreline east of the Niagara River mouth. In the profundal, benthic composition is similar to that found in the other Great Lakes, but biomass is less than might be expected given the amount of organic material settling to the bottom. Benthic standing stocks in this region have apparently declined almost threefold since the 1960s. Reasons for this decline do not appear to be related to trends in water column productivity or to predation pressure, but may be related to the accumulation of contaminants. Research needs include studies to assess benthic trends over a much broader area of the lake and studies to examine the impact of sublethal levels of contaminants.


1987 ◽  
Vol 13 (3) ◽  
pp. 250-263 ◽  
Author(s):  
I. Stepien ◽  
D.C.L. Lam ◽  
C.R. Murthy ◽  
M.E. Fox ◽  
J. Carey

Author(s):  
Alexander Gatch ◽  
Dimitry Gorsky ◽  
Zy Biesinger ◽  
Eric Bruestle ◽  
Kelley Lee ◽  
...  

1990 ◽  
Vol 196 ◽  
Author(s):  
Yasunori Saotome ◽  
Nobuhiro Iguchi

ABSTRACTThe microstructural changes associated with phase transformation and the straining behavior in polycrystalline structures during transformational superplastic deformation have betransformatonal superplasticen investigated. In-situ observations have been carried out with specially designed hot-stage microscopes. The strain distribution has been examined by microscopic strain analyses using a micro-grid pattern with 12.7 and 6 μm intervals in pure iron, 0.1%C steel and eutectoid steel. The results are as follows: (1) In the initial stage of Ac3 transformation in pure iron, superplastic strain is induced by the sliding at o/y interface along the prior ferrite grain boundaries and by the grain rotation. In the intermediate stage, the sliding deformation is generated at the migrating tranformation interface associated with the growth of austenite grains. (2) Accumulated strain by sliding has been observed within the previously transformed region during Ac3 transformation in 0.1%C steel. (3) The characteristic straining behavior in the eutectoid steel is due to the behavior at the transformation interface in the microstructure including secondary phase Fe3C particles. These observations suggest that a sliding mechanism at the migrating interface is a principal mechanism of transformation superplasticity.


1988 ◽  
Vol 23 (2) ◽  
pp. 292-300 ◽  
Author(s):  
R. James Maguire ◽  
Richard J. Tkacz

Abstract The surface microlayer of the Niagara River at Niagara-on-the-Lake was sampled 34 times in 1985-86, and was shown to contain PCBs, chlorobenzenes and chlorinated hydrocarbons at concentrations generally up to 40 times greater than concentrations 1n subsurface water. Organisms which spend part or all of their lives at the air-water interface are thus likely to be at increased risk relative to subsurface water exposure. A small “spill” of PCBs 1n the river on July 29, 1986 was only detected in the surface micro-layer, and not in subsurface water. On this date, concentrations of PCBs in the surface microlayer were up to 6,400 times larger than concentrations in the subsurface water, and 1t appeared that the “spill” was downstream of Niagara Falls and the Whirlpool. Despite such high concentrations of chlorinated hydrocarbons in the surface microlayer, at no time during this study did the microlayer contribute significantly, relative to subsurface water, to the loading (i.e., amounts) of these chemicals from the Niagara River to Lake Ontario.


2017 ◽  
Vol 19 (5) ◽  
pp. 1533-1546 ◽  
Author(s):  
Gregory R. Jacobs ◽  
Eric L. Bruestle ◽  
Anna Hussey ◽  
Dimitry Gorsky ◽  
Aaron T. Fisk

Sign in / Sign up

Export Citation Format

Share Document