Analysis of Aromatic Amines in Industrial Wastewater by Capillary Gas Chromatography-Mass Spectrometry

2000 ◽  
Vol 35 (2) ◽  
pp. 245-262 ◽  
Author(s):  
Francis I. Onuska ◽  
Ken A. Terry ◽  
R. James Maguire

Abstract The analysis of aromatic amines, particularly benzidines, at trace levels in environmental media has been difficult because of the lack of suitable deactivated capillary column stationary phases for gas chromatography. This report describes the use of an improved type of column as well as a method for the analysis of anilines and benzidines in water, wastewater and sewage samples. Extraction procedures are applicable to a wide range of compounds that are effectively partitioned from an aqueous matrix into methylene chloride, or onto a solid-phase extraction cartridge. The extracted analytes are also amenable to separation on a capillary gas chromatographic column and transferable to the mass spectrometer. These contaminants are converted to their N-trifluoroacetyl derivatives. Aniline and some substituted anilines, and 3,3’-dichlorobenzidine and benzidine were determined in 24-h composite industrial water, wastewater, primary sludge and final effluent samples at concentrations from 0.03 up to 2760 µg/L.

2004 ◽  
Vol 380 (2) ◽  
pp. 541-548 ◽  
Author(s):  
Hai-Shu LIN ◽  
Andrew M. JENNER ◽  
Choon Nam ONG ◽  
Shan Hong HUANG ◽  
Matthew WHITEMAN ◽  
...  

8-Hydroxy-2´-deoxyguanosine (8OHdG) is a widely used biomarker for the measurement of endogenous oxidative DNA damage. A sensitive method for the quantification of 8OHdG in urine by single solid-phase extraction and GC-MS (gas chromatography with MS detection) using selective ion monitoring is described in the present study. After solid-phase extraction, samples are freeze-dried, derivatized by trimethylsilylation and analysed by GC-MS. The urinary 8OHdG was quantified using heavy isotope dilution with [18O]8OHdG. The recovery of 8OHdG after the solid-phase extraction ranged from 70 to 80% for a wide range of urinary 8OHdG levels. Using 1 ml of urine, the limit of quantification was >2.5 nM (2.5 pmol/ml) and the calibration curve was linear in the range 2.5–200 nM. This method was applied to measure 8OHdG in urine samples from 12 healthy subjects. The intra- and inter-day variations were <9%. Urinary 8OHdG levels in spot urine samples from four healthy subjects were also measured for 1 week and, again, the variation was small. The presence of H2O2 in urine did not cause artifactual formation of 8OHdG. Since this assay is simple, rapid, sensitive and reproducible, it seems suitable to be used as a routine methodology for the measurement of urinary excretion of 8OHdG in large population studies.


1998 ◽  
Vol 81 (2) ◽  
pp. 359-367 ◽  
Author(s):  
Laura A Adam ◽  
Valerie B Reeves

abstract The method described detects and confirms presence of pentobarbital residues in dry, extruded feeds at concentrations of 5-20 ppb. Dried feed is ground to a uniform powder and shaken overnight in methanol. A portion of the methanolic extract is evaporated, and the residue is reconstituted in phosphate-buffered saline. The aqueous extract is cleaned with a solid-phase extraction cartridge designed to extract barbiturate residues from biological matrixes. Dimethyl sulfoxide, tetramethylammonium hydroxide, and iodomethane are added to derivatize pentobarbital. 1,3-Dimethylpentobarbital is then acidified with dilute hydrochloric acid and extracted with isooctane. The organic layer is transferred and evaporated under a stream of nitrogen. The residue is reconstituted in a small volume of ethyl acetate for analysis by gas chromatography/mass spectrometry. The limit of detection is approximately 0.7 ppb. The method was validated with pentobarbital-fortified feed samples containing high concentrations of meat and bone meal.


Author(s):  
Nader Rifai ◽  
Thilo Hagen ◽  
Loetta Bradley ◽  
Masayuki Sakamoto

We developed a sensitive assay for the rapid determination of serum methylmalonic acid concentration using capillary gas chromatography-mass spectrometry (GC/MS) with selected ion monitoring and a simple solid-phase extraction. The assay was linear up to 10 000 nmol/L and had a detection limit < 50 nmol/L, average recovery of 98% and between-day coefficient of variation at concentrations of 570 and 2206 nmol/L of 7.7% and 5.4%, respectively ( n = 25). Comparison with another validated GC/MS method using sera with a wide range of methylmalonic acid concentrations (94-2020 nmol/L) revealed a slope and intercept of 0.97 and 17 nmol/L, respectively ( n = 38). Methylmalonic acid concentrations determined by this assay in a group of apparently healthy individuals ranged from 64–331 nmol/L ( n = 81). We conclude that the method is ideally suited for the determination of methylmalonic acid at physiological concentrations in both clinical and research laboratories.


Sign in / Sign up

Export Citation Format

Share Document