Storm-induced circulation in the Pearl River Estuary of China during super Typhoon Koryn

2012 ◽  
Vol 47 (3-4) ◽  
pp. 314-332 ◽  
Author(s):  
Liqun Tang ◽  
Jinyu Sheng ◽  
Yuhan Cai

This study presents a numerical investigation of storm-induced circulation and hydrographic distributions over the Pearl River Estuary (PRE) in South China's Guangdong Province during super Typhoon Koryn in June 1993. The nested-grid modelling system used in this study has three downscaling subcomponents: an outer-most sub-model with a coarse horizontal resolution of ∼7 km for simulating surface elevations and depth-mean currents forced by wind and tides over China Seas from Bohai Sea to the northern South China Sea; and an inner-most sub-model with a fine resolution of ∼1.2 km for simulating the three-dimensional estuarine circulation and hydrographic distributions in the PRE and adjacent waters. A parametric vortex is inserted into the coarse-resolution (0.5°) numerical weather forecast products to better represent the atmospheric pressure and wind stress associated with Koryn. Model results demonstrate that large surface elevations and intense surface currents are generated over the area of influence of the storm. Lagrange velocities of near-surface particles are also used to examine the effect of the storm on the movements and dispersion of near-surface particles over the study region.

2021 ◽  
Vol 8 ◽  
Author(s):  
Zhifa Luo ◽  
Bensheng Huang ◽  
Xiaohong Chen ◽  
Chao Tan ◽  
Jing Qiu ◽  
...  

This study explored the effects of interactions between waves and current on storm surge in the Pearl River Estuary (PRE) using a fully coupled wave–current model. The model was validated based on in situ observations during the traverse of super typhoon Mangkhut. The results indicated that the model could reproduce the storm surge and wave setup processes. Numerical experiments showed that simulations of storm surge are minimally affected by wave setup. The wave setup during super typhoon Mangkhut reached up to 0.23 m and contributed to the total near shore storm surge by up to 8%. The simulations of the coupled model showed a better correlation with observations compared to those of an uncoupled model. The storm surge increased with transport upstream in a tidal-dominated outlet, whereas it decreased in a river-dominated outlet. The storm surge and wave setup increased and decreased, respectively, during spring tide as compared to that during a neap tide. The storm surge increased with increasing runoff in the upper river reaches, whereas there was little change in the tidal-dominated lower river reaches. This research emphasizes the importance of integrating the effects of multiple dynamic factors in the forecasting of storm surge and provides a reference for similar studies in other estuaries with multiple outlets and a complex river network.


2009 ◽  
Vol 85 (3) ◽  
pp. 422-430 ◽  
Author(s):  
Wenlu Lan ◽  
Bangqin Huang ◽  
Minhan Dai ◽  
Xiuren Ning ◽  
Lingfeng Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document