scholarly journals Linking discolouration modelling and biofilm behaviour within drinking water distribution systems

2016 ◽  
Vol 16 (4) ◽  
pp. 942-950 ◽  
Author(s):  
S. Husband ◽  
K. E. Fish ◽  
I. Douterelo ◽  
J. Boxall

High quality drinking water exits modern treatment works, yet water quality degradation such as discolouration continues to occur within drinking water distribution systems (DWDS). Discolouration is observed globally, suggesting a common process despite variations in source, treatment, disinfection and network configurations. The primary cause of discolouration has been identified as mobilisation of particulate material from pipe walls and the verified Prediction of Discolouration in Distribution Systems (PODDS) model uses measurable network hydraulics to simulate this response. In this paper the cohesive properties of discolouration material are explored and it is hypothesised that in simulating the turbidity response, the PODDS model is actually describing the development and cohesive strength behaviour of biofilms. Applying this concept can therefore facilitate a rapid and simple assessment of DWDS biofilm activity. A review of the findings from PODDS studies conducted internationally is presented, focussing on the macro or observable aspects of discolouration. These are compared and contrasted with associated biofilm studies which consider discolouration material at the micro-scale. Combining the results from these (past) studies to improve the understanding of interactions between microbial ecology and discolouration are discussed with a view to DWDS operational strategies that safeguard and optimise drinking water supply.

2020 ◽  
Vol 41 (S1) ◽  
pp. s255-s255
Author(s):  
Ayodele T. Adesoji ◽  
Adeniyi A. Ogunjobi

Background: Multidrug-resistant bacteria can lead to treatment failure, resulting in infectious diseases being transferred through nonpotable water. Aminoglycosides are an important class of antibiotics that are abused in Nigeria. Few studies have investigated aminoglycoside-modifying genes (AMGs) that are likely responsible for resistance in Nigeria bacteria isolates. Therefore, we aimed to characterize AMGs from isolates in drinking water distribution systems (DWDS) in southwestern Nigeria. Methods: Multidrug-resistant bacteria (n = 181) that had been previously characterized by 16S rDNA sequencing and that were positive for resistance to at least 1 aminoglycoside antibiotic were selected from 6 treated and untreated water distribution systems. Strains were PCR genotyped for 3 AMGs: aph(3)c, ant(3)b and aph(6)-1dd. Results: Of 181 MDR bacteria tested, 69 (38.12%) were positive for at least 1 of the AMGs. The most common was ant(3)c (27.6%), followed by aph(3")c (18.23%). Both aph(3)c and ant(3")b were found in 7.73% of tested isolates, ant(3)b was most commonly found in Alcaligenes spp (50%). Furthermore, aph(3")c was most commonly detected in Proteus spp (50%). Other genera positive for AMGs included Acinetobacter, Aeromonas, Bordetella, Brevundimonas, Chromobacterium, Klebsiella, Leucobacter, Morganella, Pantoae, Proteus, Providencia, Psychrobacter, and Serratia. Conclusions: High occurrence of ant(3)c and aph(3)c among these bacteria call for urgent attention among public health workers because these genes can be easily disseminated to consumers if present on mobile genetic elements like plasmids, integrons, and transposons.Funding: NoneDisclosures: None


Sign in / Sign up

Export Citation Format

Share Document