Soil moisture distribution under trickle irrigation: a review

2020 ◽  
Vol 20 (3) ◽  
pp. 761-772 ◽  
Author(s):  
Arpna Bajpai ◽  
Arun Kaushal

Abstract The wetting pattern of soil under trickle (drip) irrigation is governed by soil texture, structure, initial water content, emitter spacing, discharge rate and irrigation frequency. For efficient management of trickle irrigation moisture distribution plays an important role. The degree of soil wetted volume in an irrigation system determines the amount of water required to wet the root zone. This article helps in understanding moisture distribution for different lateral spacing, emitter spacing, emitter discharge rates and drip line installation depth for trickle irrigation under various soil conditions all over the world. This review reveals that soil moisture distribution and uniformity within the soil profile were affected by the distance between emitters rather than the distance between drip lines. In drip irrigation systems, the less the dripper spacing, the greater the moisture distribution as well as water use efficiency and crop yield. The radial spread of moisture was greater at lower water application rates, whereas the vertical spread was greater at higher water application rates. The vertical movement of soil moisture was greater than the horizontal movement under surface as well as subsurface drip irrigation systems. Deeper drip tape installations had a potential risk of not providing moisture to shallow rooted crops.

Author(s):  
A. Selvaperumal ◽  
E. Sujitha ◽  
I. Muthuchamy

Drip irrigation system uniformity can preserve a higher crop yield and deplete the initial investment of cost. The experiment was conducted at precision farming development centre research farm, Tamil Nadu Agricultural University, Coimbatore, to evaluate the uniformity coefficient and soil moisture distribution under drip irrigation system. The experiment was designed under Factorial Randomized Block Design (FRBD) which included three fertigation levels 80%, 100% and 120% of Recommended Dose of fertilizers which were replicated thrice. The Coefficient of Variation (CV) was obtained as 0.0207 per cent kept at a constant pressure of 50.66 kPa, Statistical Uniformity (SU) as 97 per cent and Coefficient of Uniformity (CU) as 0.9518. As the elapsed time increased, the rate of increase of wetted zone diameter decreased. A high R2 value of 0.97 shows the goodness of fit for the horizontal movement. The mean soil moisture distribution 39.2 per cent was observed below the emitter at the depth of 10 cm immediately after irrigation.


Author(s):  
A. Selvaperumal ◽  
E. Sujitha ◽  
I. Muthuchamy

Drip irrigation system uniformity can preserve a higher crop yield and deplete the initial investment of cost. The experiment was conducted at precision farming development centre research farm, Tamil Nadu Agricultural University, Coimbatore, to evaluate the uniformity coefficient and soil moisture distribution under drip irrigation system. The experiment was designed under Factorial Randomized Block Design (FRBD) which included three fertigation levels 80%, 100% and 120% of Recommended Dose of fertilizers which were replicated thrice. The Coefficient of Variation (CV) was obtained as 0.0207 per cent kept at a constant pressure of 50.66 kPa, Statistical Uniformity (SU) as 97 per cent and Coefficient of Uniformity (CU) as 0.9518. As the elapsed time increased, the rate of increase of wetted zone diameter decreased. A high R2 value of 0.97 shows the goodness of fit for the horizontal movement. The mean soil moisture distribution 39.2 per cent was observed below the emitter at the depth of 10 cm immediately after irrigation.


Sign in / Sign up

Export Citation Format

Share Document