scholarly journals Vulnerability of water distribution networks with real-life pipe failure statistics

Author(s):  
Richárd Wéber ◽  
Tamás Huzsvár ◽  
Csaba Hős

Abstract Reasons for occasional, random pipe bursts in water distribution networks (WDNs) might come from numerous factors (e.g. pH value of the soil, the pipeline material). Still, the isolation of the damaged section is inevitable. While the corresponding area is segregated by closing the isolation valves, there is a shortfall in drinking water service. This paper analyses the vulnerability of segments of WDNs from the viewpoint of the consumers that is the product of the failure rate and the relative demand loss. Real pipe failure database, pipe material and pipe age data are used to increase the accuracy of the failure rate estimation for 27 real-life WDNs from Hungary. The vulnerability analysis revealed the highly exposed nature of the local vulnerabilities; the distribution of local vulnerability values follows a power-law distribution. This phenomenon is also found by investigating the artificial WDNs from the literature using N rule in terms of isolation valve layout, namely the ky networks, with similar results.

2021 ◽  
Author(s):  
Alireza Moghaddam ◽  
Roya Peirovi-Minaee ◽  
Hossein Rezaei ◽  
Alireza Faridhosseini ◽  
Ali Naghi Ziaei

Abstract. In this research, reliability indicators of water distribution networks are evaluated under pipe failure conditions. The case studies include two benchmark and one real-life water distribution networks in Iran with more hydraulic constraints. Some important reliability indicators are presented such as resilience index, network resilience, modified resilience index and minimum surplus head index. GANetXL is used to do one-objective and two-objective optimization of the previously mentioned water distribution networks in order to not only minimize the cost, but also maximize the reliability indicators. Moreover, the results of a statistical analysis for each pipe is used to determine the sensitive pipes that are of the most failure probability. GANetXL is an optimization tool in Excel environment and works based on Genetic Algorithm. GANetXL has the capability of being linked to EPANET (Hydraulic simulation software). The results obtained clearly show that network resilience index is of poor performance when compared with the other indexes under pipe failure conditions, especially in real-life networks that include small pipe diameters. It was also showed that if a water distribution network was optimized only in terms of cost, there would be an unacceptable pressure drop at some nodes in case of pipe failure.


2019 ◽  
Vol 63 (4) ◽  
pp. 295-300 ◽  
Author(s):  
Tamás Huzsvár ◽  
Richárd Wéber ◽  
Csaba János Hős

One of the basic infrastructures of every settlement is the water distribution system, which provides clean and potable water for both private houses, industrial consumers and institution establishments. The operational robustness and vulnerabilities of these networks is an essential issue, both for the quality of life and for the preservation of the environment. Even with frequent and careful maintenance, unintentional pipe bursts might occur, and during the reparation time, the damaged section must be isolated hydraulically from the main body of the water distribution network. Due to the size and complexity of these networks, it might not be trivial how to isolate the burst section, especially if one wishes to minimize the impact on the overall system. This paper presents an algorithmic method that is capable of creating isolation plans for real-life networks in a computationally efficient way, based on the graph properties of the network. Besides this segmentation plan, the topological behavior of the structural graph properties was analyzed with the help of the complex network theory to create a method for the quantitative topology based categorization of the water distribution networks.


2017 ◽  
Vol 20 (6) ◽  
pp. 1286-1295 ◽  
Author(s):  
Xiang Xie ◽  
Quan Zhou ◽  
Dibo Hou ◽  
Hongjian Zhang

Abstract The performance of model-based leak detection and localization techniques heavily depends on the configuration of a limited number of sensors. This paper presents a sensor placement optimization strategy that guarantees sufficient diagnosability while satisfying the budget constraint. Based on the theory of compressed sensing, the leak localization problem could be transformed into acquiring the sparse leak-induced demands from the available measurements, and the average mutual coherence is devised as a diagnosability criterion for evaluating whether the measurements contain enough information for identifying the potential leaks. The optimal sensor placement problem is then reformulated as a {0, 1} quadratic knapsack problem, seeking an optimal sensor placement scheme by minimizing the average mutual coherence to maximize the degree of diagnosability. To effectively handle the complicated real-life water distribution networks, a validated binary version of artificial bee colony algorithm enhanced by genetic operators, including crossover and swap, is introduced to solve the binary knapsack problem. The proposed strategy is illustrated and validated through a real-life water distribution network with synthetically generated field data.


10.29007/lvbt ◽  
2018 ◽  
Author(s):  
Daniele Laucelli ◽  
Luigi Berardi ◽  
Antonietta Simone ◽  
Orazio Giustolisi

A new playful interface allowing a more intuitive understanding of real-life problems is the Serious Gaming, which combines video game and utility functions addressed to problems other than the mere entertainment. The use of Serious Gaming allows having fun while favoring the learning process related to specific technical fields. This paper presents the results of using Serious Gaming within a university classroom of 26 students to solve an engineering problem, i.e. the pipe sizing of several water distribution networks. It relates to five benchmark water distribution networks, and students were asked to find the optimal value of pipe diameters to match minimum capital cost of pipes and good average pressure. Therefore, the players/students can be seen as decision makers, from a real-life standpoint. The paper has multiple aims, such as investigating the gaming approach usefulness in consolidating/learning the main concepts of network hydraulics and bringing users closer to real-life complexity of engineering problems where different technical aspects must be considered at the same time.


2018 ◽  
Vol 20 (5) ◽  
pp. 1191-1200 ◽  
Author(s):  
Konstantinos Kakoudakis ◽  
Raziyeh Farmani ◽  
David Butler

Abstract This paper examines the impact of weather conditions on pipe failure in water distribution networks using artificial neural network (ANN) and evolutionary polynomial regression (EPR). A number of weather-related factors over 4 consecutive days are the input of the binary ANN model while the output is the occurrence or not of at least a failure during the following 2 days. The model is able to correctly distinguish the majority (87%) of the days with failure(s). The EPR is employed to predict the annual number of failures. Initially, the network is divided into six clusters based on pipe diameter and age. The last year of the monitoring period is used for testing while the remaining years since the beginning are retained for model development. An EPR model is developed for each cluster based on the relevant training data. The results indicate a strong relationship between the annual number of failures and frequency and intensity of low temperatures. The outputs from the EPR models are used to calculate the failures of the homogenous groups within each cluster proportionally to their length.


2018 ◽  
Vol 21 (2) ◽  
pp. 207-222 ◽  
Author(s):  
Daniele B. Laucelli ◽  
Luigi Berardi ◽  
Antonietta Simone ◽  
Orazio Giustolisi

Abstract Real-life engineering problems relate to different technical aspects to be considered at the same time. Traditional teaching techniques for engineering students (i.e., future decision-makers for such problems) sometimes need to be supplemented to convey this complexity, and thus innovative approaches are needed. A new and useful approach allowing a more intuitive understanding of real-life problems is serious gaming (SG), which combines a game environment and utility functions to address real problems. This paper describes a first attempt to use SG to help engineering students learn and deal with the complexities of designing water distribution networks given multiple objectives and uncertainty. This application of SG relates to five benchmark water distribution networks, and students were asked to find the optimal value of pipe diameters to minimize the capital cost of pipes. The results of the experiment show that students learn in less time how to design water distribution networks while enjoying the experience. Most students found the approach useful, claiming that the difficulty in approaching the pipe sizing problem decreased considerably as the practice of the game increases. The results of the experiment suggest that SG may have value in learning how to design other engineering systems.


Sign in / Sign up

Export Citation Format

Share Document