Full-Scale Cyclic Activated Sludge System Phosphorus Removal

1992 ◽  
Vol 26 (9-11) ◽  
pp. 2253-2256 ◽  
Author(s):  
M. C. Goronszy

The performance of three full-scale cyclic activated sludge facilities, operated for biological phosphorus removal is demonstrated. The facilities are operated without formal mixed anoxic or anaerobic sequences in a variable volume mode. The system is independent of fill-ratio operation for filamentous sludge bulking control.

1994 ◽  
Vol 29 (7) ◽  
pp. 289-294 ◽  
Author(s):  
S. Kunst ◽  
M. Reins

Six processes implemented at treatment plants with biological phosphorus removal aiming to avert sludge bulking were examined systematically. Intensive observation of the filamentous microorganisms (characterised according to a new scheme) and microscopic observation of sludge structures are used to identify the significant organisms and their bulking behaviour.


1983 ◽  
Vol 15 (3-4) ◽  
pp. 1-13 ◽  
Author(s):  
James L Barnard

This paper briefly summarizes the early work on phosphorus removal in activated sludge plants in the U.S.A. and observed that such removals only occurred in low SRT plants of the plug flow type and in the Phostrip plants, neither designed for full nitrification. The discovery of simultaneous nitrogen and phosphorus removal, as well as full-scale experiments are discussed. The Phoredox process was proposed utilizing internal recycling for the removal of nitrates and an anaerobic first stage in which the incoming feed is used to obtain the necessary anaerobic conditions, essential as a conditioning step for the uptake of phosphorus. Proposed mechanisms are discussed.


2013 ◽  
Vol 68 (2) ◽  
pp. 366-371 ◽  
Author(s):  
A. M. Saunders ◽  
P. Larsen ◽  
P. H. Nielsen

The composition of nutrient-removing microbial communities in five full-scale membrane bioreactors (MBRs) was investigated using fluorescence in situ hybridization and 16S rRNA pyrosequencing and compared to similar analyses of conventional activated sludge (CAS) communities. The communities were highly similar but some genera that are always present in enhanced biological phosphorus removal (EBPR) (core groups) were absent in the MBRs. The overall phylogenetic similarity of the communities indicated that these differences were primarily closely related groups. More research is needed to establish the operational significance of the observed differences between MBR and CAS sludge.


2009 ◽  
Vol 59 (5) ◽  
pp. 857-865 ◽  
Author(s):  
Y. Cao ◽  
C. M. Ang ◽  
K. C. Chua ◽  
F. W. Woo ◽  
H. Chi ◽  
...  

This paper presents the investigation results of retrofitting an anoxic selector to an anaerobic selector through stepwise reduction of air supply in a full-scale activated sludge process with a focus on enhanced biological phosphorus removal (EBPR). The process experienced gradual shift from a Ludzack-Ettinger (LE) to an anaerobic-anoxic-oxic (A2O) process and subsequently, an anaerobic-oxic (A/O) process. The major findings are: (i) the average influent-based PO43−-P release in the anaerobic selector compartment was 16.3 mg P l−1 and that in the secondary clarifier was 1.7 mg P l−1. 75% of the SCOD and 93% of the acetic acid in the primary effluent were taken up in the anaerobic selector compartment, respectively; (ii) PO43−-P uptake contributed by both aerobic and denitrifying phosphorus accumulating organisms (DPAOs) occurred mainly in the first and second aerobic lanes together with simultaneous nitrification and denitrification (SND) while there was not much contribution from the last aerobic lane; (iii) The average PO43−-P concentration of the final effluent was 2.4 mg P l−1 corresponding to a removal efficiency of 85%; (iv) the SVI was satisfactory after retrofitting; and (v) the increase of NH4+-N in the final effluent from the commencement to the completion of the retrofitting resulted in an approximate 40–50% reduction in oxygen demand and a significant aeration energy saving was achieved.


Sign in / Sign up

Export Citation Format

Share Document