Another carbon source for BNR system

1996 ◽  
Vol 34 (1-2) ◽  
pp. 363-369 ◽  
Author(s):  
E. Choi ◽  
H. S. Lee ◽  
J. W. Lee ◽  
S. W. Oa

It has been known wastewater with low COD/TKN ratio produces higher effluent NO3-N and adversely affects poly P microbes returning it to an anaerobic stage in BNR systems. Nightsoil applicability to return activated sludge line to minimize NO3-N effect to poly P microbes in anaerobic stage was examined with laboratory BNR systems operated at 20°C. The study results indicated nightsoil application could improve nitrogen and phosphorus removal efficiencies both with low strength settled municipal and piggery wastes presenting low COD/TKN ratios of 6 and 2.2, respectively. Even organic loading rates increased to 20 to 60% due to nightsoil application, the effluent COD increased only 10 to 20%. This would suggest nightsoil can be used as another carbon source and nightsoil application to return activated sludge line can be another alternative modification to improve BNR systems.

2017 ◽  
Vol 14 (2) ◽  
pp. 99-106 ◽  
Author(s):  
Zhengan Zhang ◽  
Shulin Pan ◽  
Fei Huang ◽  
Xiang Li ◽  
Juanfang Shang ◽  
...  

2000 ◽  
Vol 41 (9) ◽  
pp. 139-145
Author(s):  
R. Kayser

The German design guideline A 131 “Design of single stage activated sludge plants” was amended in 1999. The main changes of the guideline from 1991 are outlined. The design procedure for plants with nitrogen and phosphorus removal is presented.


1998 ◽  
Vol 38 (1) ◽  
pp. 255-264 ◽  
Author(s):  
Germán Cuevas-Rodríguez ◽  
Óscar González-Barceló ◽  
Simón González-Martínez

This research project was conducted to analyze the performance of a SBR reactor when being fed with anaerobically fermented wastewater. Important was to determine the capacity of the system to remove nitrogen and phosphorus. Two SBR reactors, each one with a volume of 980 liters, were used: one used as fermenter and the other as activated sludge SBR. Using 8-hour cycles, the reactors were operated and studied during 269 days. The fermenter produced an effluent with an average value of 223±24 mg/l of volatile fatty acids. The activated sludge SBR was tested under 3 organic loading rates of 0.13, 0.25, and 0.35 kgCODtotal/kgTSS·d. For the three tested organic loading rates, PO4-P concentrations under 1.1 mg/l and COD between 37 and 38 mg/l were consistently achieved. Exceptionally high NH4-N influent values were measured during the time of the experimentation with the organic load of 0.25 kgCODtotal/kgTSS·d, not reaching in this case full nitrification. Denitrification was observed during the fill phase in every cycle. SVI values between 40 and 70 were determined during the experimental runs.


2000 ◽  
Vol 42 (3-4) ◽  
pp. 89-94 ◽  
Author(s):  
H.Y. Chang ◽  
C.F. Ouyang

This investigation incorporated a stepwise feeding strategy into the biological process containing anaerobic/oxide/anoxic/oxide (AOAO) stages to enhance nitrogen and phosphorus removal efficiencies. Synthetic wastewater was fed into the experimental reactors during the anaerobic and anoxic stages and the substrates/nutrients were successfully consumed without recycling either nitrified effluent or external carbon source. An intrinsic sufficient carbon source developed during the anoxic stage and caused the NOx (NO2-N+NO3-N) concentration to be reduced from 11.85mg/l to 5.65mg/l. The total Kjeldahl nitrogen (TKN) removal rate was between 81.81%∼93.96% and the PO4-P removal ratio ranged from 93%∼100%. The substrate fed into the anaerobic with a Q1 flow rate and a Q2 into the anoxic reactor. The three difference experiments contained within this study produced Q1/Q2 that varied from 7/3, 8/2, and 9/1. The AOAO process saved nearly one-third of the energy compared with typical biological nutrient removal (BNR) system A2O processes.


1983 ◽  
Vol 15 (3-4) ◽  
pp. 1-13 ◽  
Author(s):  
James L Barnard

This paper briefly summarizes the early work on phosphorus removal in activated sludge plants in the U.S.A. and observed that such removals only occurred in low SRT plants of the plug flow type and in the Phostrip plants, neither designed for full nitrification. The discovery of simultaneous nitrogen and phosphorus removal, as well as full-scale experiments are discussed. The Phoredox process was proposed utilizing internal recycling for the removal of nitrates and an anaerobic first stage in which the incoming feed is used to obtain the necessary anaerobic conditions, essential as a conditioning step for the uptake of phosphorus. Proposed mechanisms are discussed.


2015 ◽  
Vol 72 (4) ◽  
pp. 528-534 ◽  
Author(s):  
Yang Bai ◽  
Xie Quan ◽  
Yaobin Zhang ◽  
Shuo Chen

A University of Cape Town process coupled with integrated fixed biofilm and activated sludge system was modified by bypass flow strategy (BUCT–IFAS) to enhance nitrogen and phosphorus removal from the wastewater containing insufficient carbon source. This process was operated under different bypass flow ratios (λ were 0, 0.4, 0.5, 0.6 and 0.7, respectively) to investigate the effect of different operational modes on the nitrogen (N) and phosphorus (P) removal efficiency (λ = 0 was noted as common mode, other λ were noted as bypass flow mode), and optimizing the N and P removal efficiency by altering the λ. Results showed that the best total nitrogen (TN) and total phosphorus (TP) removal performances were achieved at λ of 0.6, the effluent TN and TP averaged 14.0 and 0.4 mg/L meeting discharge standard (TN < 15 mg/L, TP < 0.5 mg/L). Correspondingly, the TN and TP removal efficiencies were 70% and 94%, respectively, which were 24 and 41% higher than those at λ of 0. In addition, the denitrification and anoxic P-uptake rates were increased by 23% and 23%, respectively, compared with those at λ of 0. These results demonstrated that the BUCT–IFAS process was an attractive method for enhancing nitrogen and phosphorus removal from wastewater containing insufficient carbon source.


Sign in / Sign up

Export Citation Format

Share Document