Evolution of the Southpest Wastewater Treatment Plant

2000 ◽  
Vol 41 (9) ◽  
pp. 7-14
Author(s):  
A. Jobbágy ◽  
B. Literáthy ◽  
F. Farkas ◽  
Gy. Garai ◽  
Gy. Kovács

The treated effluent of the Southpest Wastewater Treatment Plant is discharged into a small, low-flow branch of the Danube susceptible to eutrophication. The first, high-load activated sludge system with a hydraulic retention time of 2.5 hrs in the aerated basins, was installed here in 1966. The paper presents the evolution of the technology by illustrating the effects of the different changes carried out since 1991. Reconfiguration of the existing activated sludge basins connected originally in parallel into an arrangement of tanks in series increased the settleability of the sludge as well as the efficiency of COD removal significantly. Introduction of an anaerobic zone preceding the aerated basins facilitated biological excess phosphorus removal with a consequent release in the thickener and digester. Introducing lime addition into the recycled sludge processing wastes significantly improved the performance of the system. However, since there had been no provision built for eliminating the nitrate content of the recycled sludge, efficiency of phosphorus removal proved to be dependent on the eventually occurring nitrification. In order to achieve both an effective nitrogen and phosphorus removal the current technology established in 1999 applies a nitrification and a denitrification filter following the activated sludge unit and uses precipitation for phosphorus removal.

2011 ◽  
Vol 63 (10) ◽  
pp. 2138-2142 ◽  
Author(s):  
X. S. Kang ◽  
C. Q. Liu ◽  
B. Zhang ◽  
X. J. Bi ◽  
F. Zhang ◽  
...  

The application of reversed A2/O process in practice in China is mainly discussed in this paper. As a new process on nitrogen and phosphorus removal, principle and technical features of reversed A2/O process are also summarized. The application in rebuilt wastewater treatment plant shows that reversed A2/O process not only has merits on high nitrogen and phosphorus removal efficiency, but also has merits on energy saving. The application in newly-build wastewater treatment plant shows that infrastructure and equipment investment of reversed A2/O process economized 15% and 10% respectively, compared to conventional A2/O process. The practical application shows that reversed A2/O process is a new nitrogen and phosphorus removal process, which is suitable for China's national conditions.


2013 ◽  
Vol 8 (1) ◽  
pp. 1-8

Successful start-up of a full-scale wastewater treatment plant (WWTP) is a key issue for the succeeding operation of WWTP on the one hand and the nutritious phosphorus removal is of great concern on the other. After the construction of Mudanjiang WWTP with a flow rate of 100,000 m3 d-1 in Heilongjiang Province of China, a novel way of start-up through feeding wastewater continuously into the system was attempted against the conventional start-up method of inoculating activated sludge in the aeration tank by feeding wastewater intermittently. Activated sludge was cultivated and proliferated in the aeration tanks instead of dosing acclimated sludge from other source. After one-month’s start-up operation, MLSS, SV and SVI increased to 2.5 kg m-3, 30% and nearly 80% respectively, which indicated that quick and simple start-up had been achieved. After successful start-up, an investigation into phosphorus removal was conducted with the emphasis on influencing factors such as ORP and NOx-N concentration etc. When the aeration tank was switched from aerobic to anaerobic mode, phosphorus removal efficiency of 80% could be realized within the whole treatment system. Experimental results revealed that an ORP of -140 mV and NOX-N of 2 mg l-1 were critical for the anaerobic phosphorus release, and DO in the range of 1.7-2.5 mg l-1, BOD5/TP of 20-30 and SVI of 70~80 as well as SRT of 5 days were the optimal phosphorus removal conditions for the aeration tanks.


2021 ◽  
Vol 896 (1) ◽  
pp. 012076
Author(s):  
V Hanny ◽  
A M Rizal ◽  
Nasuka

Abstract Due to COVID-19 pandemic, hospital becomes the main and critical facility in any countries. This has also negatively affected the environment, as the wastewater discharged was also increased. Wastewater treatment plant in the hospital will also be affected as there will be fluctuations in volume and quality of wastewater. Hence there is an urgency to choose the appropriate technology as main solution and to improve existing wastewater treatment plant. We will report the performance of integrated system of activated sludge and constructed wetlands applied in a hospital wastewater treatment plant. Both technologies were chosen because they are simple, cheap, and highly effective technologies for wastewater treatment. Activated sludge was able to reduce organic, ammonia, and phosphat content significantly. However, the quality of effluent was still not able to meet the regulation. Application of constructed wetlands as finishing treatment was able to improve the quality of effluent to meet the standard and resulted in BOD, COD, ammonia, and phosphate of 25 mg/L, 24.18 mg/L, <0.01 mg/L, and 0.46 mg/L, respectively. Hence it can be concluded that the integration of activated sludge and constructed wetlands can be an appropriate and effortless treatment system for low-strength wastewater to meet a strict quality standard.


Sign in / Sign up

Export Citation Format

Share Document