Influence of closed loop control on microbial diversity in a nitrification process

2006 ◽  
Vol 53 (4-5) ◽  
pp. 85-93 ◽  
Author(s):  
D. Bougard ◽  
N. Bernet ◽  
P. Dabert ◽  
J.P. Delgenes ◽  
J.P. Steyer

This paper compares two control strategies for a nitrification process. The objective is to achieve partial nitrification and thus to accumulate nitrite instead of nitrate. To this end, change in temperature setpoint and active control of oxygen and ammonia concentrations are evaluated in the long term. Evaluation is made on the control performances that are obtained, but also – and more importantly – on the microbial diversity. In particular, it is shown that the combined oxygen and ammonia control strategy is more appropriate since shift in the temperature setpoint strongly affects the composition of the microbial ecosystem present in the reactor whereas active control of oxygen and ammonia does not.

Author(s):  
William J. Emblom ◽  
Klaus J. Weinmann

This paper describes the development and implementation of closed-loop control for oval stamp forming tooling using MATLAB®’s SIMULINK® and the dSPACE®CONTROLDESK®. A traditional PID controller was used for the blank holder pressure and an advanced controller utilizing fuzzy logic combining a linear quadratic gauss controller and a bang–bang controller was used to control draw bead position. The draw beads were used to control local forces near the draw beads. The blank holder pressures were used to control both wrinkling and local forces during forming. It was shown that a complex, advanced controller could be modeled using MATLAB’s SIMULINK and implemented in DSPACE CONTROLDESK. The resulting control systems for blank holder pressures and draw beads were used to control simultaneously local punch forces and wrinkling during the forming operation thereby resulting in a complex control strategy that could be used to improve the robustness of the stamp forming processes.


PLoS ONE ◽  
2015 ◽  
Vol 10 (2) ◽  
pp. e0116323 ◽  
Author(s):  
Haitao Nie ◽  
Kehui Long ◽  
Jun Ma ◽  
Dan Yue ◽  
Jinguo Liu

2005 ◽  
Vol 17 (01) ◽  
pp. 19-26 ◽  
Author(s):  
CHENG-LIANG LIU ◽  
CHUNG-HUANG YU ◽  
SHIH-CHING CHEN ◽  
CHANG-HUNG CHEN

Functional electrical stimulation (FES) is a method for restoring the functional movements of paraplegic or patients with spinal cord injuries. However, the selection of parameters that control the restoration of standing up and sitting functions has not been extensively investigated. This work provides a method for choosing the four main items involved in evaluating the strategies for sit-stand-sit movements with the aid of a modified walker. The control method uses the arm-supported force and the angles of the legs as feedback signals to change the intensity of the electrical stimulation of the leg muscles. The control parameters, Ki and Kp, are vary for different control strategies. Four items are collected through questionnaires and used for evaluation. They are the maximum reactions of the two hands, the average reaction of the two hands, largest absolute angular velocity of the knee joints, and the sit-stand-sit duration time. The experimental data are normalized to facilitate comparison. Weighting factors are obtained and analyzed from questionnaires answered by experts and are added to evaluation process for manipulation. The results show that the best strategy is the closed-loop control with parameters Ki=0.5 and Kp=0.


Sign in / Sign up

Export Citation Format

Share Document