Study of the viral removal efficiency in a urban wastewater treatment plant

2008 ◽  
Vol 58 (4) ◽  
pp. 893-897 ◽  
Author(s):  
A. Carducci ◽  
P. Morici ◽  
F. Pizzi ◽  
R. Battistini ◽  
E. Rovini ◽  
...  

Municipal and agricultural wastewater contain a variety of microorganisms and in particular enteric viruses. For the reuse of this treated wastewater it is important to ensure the efficiency of purification treatments and disinfection practices, that have often been insufficient to lower the viral load below the risk level. For this reason, for the routine analysis of recycled waters, the research into pathogenic viruses (e.g. HAV) and classical bacterial parameters (E. coli, enterococci and Salmonella) has to be associated with specific viral indicators such as somatic coliphages, adenovirus and TTV. The results of environmental monitoring, carried out in a wastewater treatment plant, showed the presence of adenovirus DNA in 100% of collected samples and TTV DNA in 95% (19/20) of raw sewage and in 85% (17/20) of the exit samples, while HAV was detected only in 2 samples over 40 (5%). The quantitative analysis has revealed an average reduction of 2 log for adenovirus and 1.58 log for TTV. The bacterial indicators were reduced by 1.74 log and 1.99 log respectively for E. coli and enterococci, while for somatic coliphages an average reduction of 2.2 log was observed. No significant correlation was shown between these parameters, confirming their inadequacy for the virological risk assessment. However the results of adenovirus confirm it as the best indicator to evaluate the efficacy of wastewater depuration plant in eliminating viruses.

2021 ◽  
pp. 0734242X2098205
Author(s):  
Katekanya Tadsuwan ◽  
Sandhya Babel

Plastic waste has become a global environmental concern. One type of plastic waste is microplastics (MPs), which can spread easily in the environment. Wastewater effluent is one of the land-based sources of MPs. This study investigates the amount of microplastic (MP) pollution in an urban wastewater treatment plant (WWTP) in Thailand. Water samples were collected and examined to find the types, morphology and sources of MPs. Wastewater was filtered through a set of sieves ranging from 5 mm to 0.05 mm. Sludge samples were also collected to find the potential risk from the application of dried sewage sludge. Fourier-transform infrared spectroscopy (FTIR) was used to confirm the types of MPs. The amount of MPs in the influent was 26.6 ± 11.8 MPs/L. More than one-third of MP particles were removed after a grit trap, followed by 14.24% removal in the secondary treatment. If the peak flow rate of the WWTP is reached, 2.32 × 109 MP particles can be released daily. The amount of MPs in a sludge sample was 8.12 ± 0.28 × 103 particles/kg dry weight. Dry sludge is one of the potential sources of MP contamination in agricultural soil. Most MPs in the liquid fraction and sludge sample were fibres. Results from FTIR analysis showed that the major types of MPs in the WWTP were polyester fibres, followed by polypropylene, polyethylene, silicone polymer and polystyrene. This finding indicates that a conventional WWTP may act as a path by which MPs enter the environment.


Author(s):  
Maria Clara V. M. Starling ◽  
Elizângela P. Costa ◽  
Felipe A. Souza ◽  
Elayne C. Machado ◽  
Juliana Calábria de Araujo ◽  
...  

AbstractThis work investigated an innovative alternative to improve municipal wastewater treatment plant effluent (MWWTP effluent) quality aiming at the removal of contaminants of emerging concern (caffeine, carbendazim, and losartan potassium), and antibiotic-resistant bacteria (ARB), as well as disinfection (E. coli). Persulfate was used as an alternative oxidant in the solar photo-Fenton process (solar/Fe/S2O82−) due to its greater stability in the presence of matrix components. The efficiency of solar/Fe/S2O82− at neutral pH using intermittent iron additions is unprecedented in the literature. At first, solar/Fe/S2O82− was performed in a solar simulator (30 W m−2) leading to more than 60% removal of CECs, and the intermittent iron addition strategy was proved effective. Then, solar/Fe/S2O82− and solar/Fe/H2O2 were compared in semi-pilot scale in a raceway pond reactor (RPR) and a cost analysis was performed. Solar/Fe/S2O82− showed higher efficiencies of removal of target CECs (55%), E. coli (3 log units), and ARB (3 to 4 log units) within 1.9 kJ L−1 of accumulated irradiation compared to solar/Fe/H2O2 (CECs, 49%; E. coli, 2 log units; ARB, 1 to 3 log units in 2.5 kJ L−1). None of the treatments generated acute toxicity upon Allivibrio fischeri. Lower total cost was obtained using S2O82− (0.6 € m−3) compared to H2O2 (1.2 € m−3). Therefore, the iron intermittent addition aligned to the use of persulfate is suitable for MWWTP effluent quality improvement at neutral pH.


2014 ◽  
Vol 535 ◽  
pp. 346-349
Author(s):  
Mei Wang ◽  
Ming Yang ◽  
Jun Liu ◽  
Jian Fen Li

Effect and benefits of a product or service could be analyzed and evaluated by life cycle assessment during the whole life cycle. Urban sewage treatment plants could improve and control urban water pollution escalating, but it also had certain harm to environment. Effect and benefits of urban wastewater treatment plant A and B were analyzed and evaluated, 13 factors were selected, and comprehensive benefits were researched quantificationally using the method of analytic hierarchy process. It found that urban wastewater treatment plant A who applied A/O process had better benefits than urban wastewater treatment plant B who applied BIOLAK process.


2001 ◽  
Vol 43 (2) ◽  
pp. 91-99 ◽  
Author(s):  
T. Iwane ◽  
T. Urase ◽  
K. Yamamoto

Escherichia coli and coliform group bacteria resistant to seven antibiotics were investigated in the Tama River, a typical urbanized river in Tokyo, Japan, and at a wastewater treatment plant located on the river. The percentages of antibiotic resistance in the wastewater effluent were, in most cases, higher than the percentages in the river water, which were observed increasing downstream. Since the possible increase in the percentages in the river was associated with treated wastewater discharges, it was concluded that the river, which is contaminated by treated wastewater with many kinds of pollutants, is also contaminated with antibiotic resistant coliform group bacteria and E.coli. The percentages of resistant bacteria in the wastewater treatment plant were mostly observed decreasing during the treatment process. It was also demonstrated that the percentages of resistance in raw sewage are significantly higher than those in the river water and that the wastewater treatment process investigated in this study works against most of resistant bacteria in sewage.


2017 ◽  
Vol 77 (2) ◽  
pp. 337-345 ◽  
Author(s):  
I. Brückner ◽  
K. Kirchner ◽  
Y. Müller ◽  
S. Schiwy ◽  
K. Klaer ◽  
...  

Abstract The project DemO3AC (demonstration of large-scale wastewater ozonation at the Aachen-Soers wastewater treatment plant, Germany) of the Eifel-Rur Waterboard contains the construction of a large-scale ozonation plant for advanced treatment of the entire 25 million m³/yr of wastewater passing through its largest wastewater treatment plant (WWTP). In dry periods, up to 70% of the receiving water consists of treated wastewater. Thus, it is expected that effects of ozonation on downstream water biocoenosis will become observable. Extensive monitoring of receiving water and the WWTP shows a severe pollution with micropollutants (already prior to WWTP inlet). (Eco-)Toxicological investigations showed increased toxicity at the inlet of the WWTP for all assays. However, endocrine-disrupting potential was also present at other sampling points at the WWTP and in the river and could not be eliminated sufficiently by the WWTP. Total cell counts at the WWTP are slightly below average. Investigations of antibiotic resistances show no increase after the WWTP outlet in the river. However, cells carrying antibiotic-resistant genes seem to be more stress resistant in general. Comparing investigations after implementation of ozonation should lead to an approximation of the correlation between micropollutants and water quality/biocoenosis and the effects that ozonation has on this matter.


2013 ◽  
Vol 68 (2) ◽  
pp. 433-440 ◽  
Author(s):  
Wanhui Zhang ◽  
Chaohai Wei ◽  
Chunhua Feng ◽  
Yuan Ren ◽  
Yun Hu ◽  
...  

The occurrence of 14 phenolic compounds (PCs) was assessed in the raw, treated wastewater, dewatered sludge and gas samples from a coking wastewater treatment plant (WWTP) in China. It was found that 3-cresol was the dominant compound in the raw coking wastewater with a concentration of 183 mg L−1, and that chlorophenols and nitrophenols were in the level of μg L−1. Phenol was the dominant compound in the gas samples, while 2,4,6-trichlorophenol predominated in the dewatered sludge sample. The anaerobic and aerobic tanks played key roles in the elimination of chlorophenols and phenols, respectively. Analysis of daily mass flows of PCs in WWTP showed that 89–98% of phenols and 83–89% of nitrophenols were biodegraded, and that 44–69% of chlorophenols were adsorbed to sludge, indicating that the fate of PCs was highly influenced by their biodegradability and physical–chemical property.


Sign in / Sign up

Export Citation Format

Share Document