Impact of rainfall temporal resolution on urban water quality modelling performance and uncertainties

2013 ◽  
Vol 68 (1) ◽  
pp. 68-75 ◽  
Author(s):  
Bastian Johann Manz ◽  
Juan Pablo Rodríguez ◽  
Čedo Maksimović ◽  
Neil McIntyre

A key control on the response of an urban drainage model is how well the observed rainfall records represent the real rainfall variability. Particularly in urban catchments with fast response flow regimes, the selection of temporal resolution in rainfall data collection is critical. Furthermore, the impact of the rainfall variability on the model response is amplified for water quality estimates, as uncertainty in rainfall intensity affects both the rainfall-runoff and pollutant wash-off sub-models, thus compounding uncertainties. A modelling study was designed to investigate the impact of altering rainfall temporal resolution on the magnitude and behaviour of uncertainties associated with the hydrological modelling compared with water quality modelling. The case study was an 85-ha combined sewer sub-catchment in Bogotá (Colombia). Water quality estimates showed greater sensitivity to the inter-event variability in rainfall hyetograph characteristics than to changes in the rainfall input temporal resolution. Overall, uncertainties from the water quality model were two- to five-fold those of the hydrological model. However, owing to the intrinsic scarcity of observations in urban water quality modelling, total model output uncertainties, especially from the water quality model, were too large to make recommendations for particular model structures or parameter values with respect to rainfall temporal resolution.

2010 ◽  
Vol 61 (9) ◽  
pp. 2381-2390 ◽  
Author(s):  
Gabriele Freni ◽  
Giorgio Mannina ◽  
Gaspare Viviani

The objective of this paper is the definition of a methodology to evaluate the impact of the temporal resolution of rainfall measurements in urban drainage modelling applications. More specifically the effect of the temporal resolution on urban water quality modelling is detected analysing the uncertainty of the response of rainfall–runoff modelling. Analyses have been carried out using historical rainfall–discharge data collected for the Fossolo catchment (Bologna, Italy). According to the methodology, the historical rainfall data are taken as a reference, and resampled data have been obtained through a rescaling procedure with variable temporal windows. The shape comparison between ‘true’ and rescaled rainfall data has been carried out using a non-dimensional accuracy index. Monte Carlo simulations have been carried out applying a parsimonious urban water quality model, using the recorded data and the resampled events. The results of the simulations were used to derive the cumulative probabilities of quantity and quality model outputs (peak discharges, flow volume, peak concentrations and pollutant mass) conditioned on the observation according to the GLUE (Generalized Likelihood Uncertainty Estimation) methodology. The results showed that when coarser rainfall information is available, the model calibration process is still efficient even if modelling uncertainty progressively increases especially with regards to water quality aspects.


Water ◽  
2018 ◽  
Vol 10 (6) ◽  
pp. 782 ◽  
Author(s):  
Jairo Torres-Matallana ◽  
Ulrich Leopold ◽  
Kai Klepiszewski ◽  
Gerard Heuvelink

2021 ◽  
Author(s):  
Katherine Purdy ◽  
Jason K Reynolds ◽  
Ian Alexander Wright

Abstract Riparian vegetation along urban streams and wetlands is frequently dominated by invasive weeds. Elevated nitrogen and phosphorous in urban waters and soils are well-known to encourage invasive urban weeds, but this research demonstrates that other urban geochemical contaminants may also be influential. Previous studies have demonstrated that the dissolution of urban concrete is a poorly recognised source of modified water and soil geochemistry, which may enhance the growth of some invasive weeds. This study investigated the relationship between urban water quality and the growth of an invasive urban riparian weed, willow (Salix spp.) to examine the contribution of concrete materials. The study used water from a wetland in the Greater Blue Mountains World Heritage Area. These wetlands have a unique biodiversity but are fragile and susceptible to degradation from human activity. Many are in urban catchments and are frequently dominated by invasive weeds, including Salix spp. In this study, willow cuttings were grown in a laboratory using four water treatments: pristine, urban, and pristine water exposed to two different concrete materials. The urban and concrete water treatments had higher pH, salinity, calcium, potassium, and higher concentration of several metals and were associated with increased growth of Salix spp. We suggest that the modification of urban water and riparian soil chemistry by urban concrete materials may contribute to the success of invasive species in urban wetlands and riparian zones. Some metals (barium, strontium) were present in urban water and in pristine water exposed to concrete and bioaccumulated in plant tissue.


2012 ◽  
Vol 66 (7) ◽  
pp. 1527-1533 ◽  
Author(s):  
P. Egodawatta ◽  
N. S. Miguntanna ◽  
A. Goonetilleke

The pollutant impacts of urban stormwater runoff on receiving waters are well documented in research literature. However, it is road surfaces that are commonly identified as the significant pollutant source. This paper presents the outcomes of an extensive program of research into the role of roof surfaces in urban water quality with particular focus on solids, nutrients and organic carbon. The outcomes confirmed that roof surfaces play an important role in influencing the pollutant characteristics of urban stormwater runoff. Pollutant build-up and wash-off characteristics for roads and roof surfaces were found to be appreciably different. The pollutant wash-off characteristics exhibited by roof surfaces show that it influences the first flush phenomenon more significantly than road surfaces. In most urban catchments, as roof surfaces constitute a higher fraction of impervious area compared with road surfaces, it is important that the pollutant generation role of roof surfaces is specifically taken into consideration in stormwater quality mitigation strategies.


Sign in / Sign up

Export Citation Format

Share Document