scholarly journals The Influence of Concrete and Urban Water Quality On The Growth of An Invasive Weed (Salix Spp.) in One of Australia’s Most Endangered Aquatic Environments.

Author(s):  
Katherine Purdy ◽  
Jason K Reynolds ◽  
Ian Alexander Wright

Abstract Riparian vegetation along urban streams and wetlands is frequently dominated by invasive weeds. Elevated nitrogen and phosphorous in urban waters and soils are well-known to encourage invasive urban weeds, but this research demonstrates that other urban geochemical contaminants may also be influential. Previous studies have demonstrated that the dissolution of urban concrete is a poorly recognised source of modified water and soil geochemistry, which may enhance the growth of some invasive weeds. This study investigated the relationship between urban water quality and the growth of an invasive urban riparian weed, willow (Salix spp.) to examine the contribution of concrete materials. The study used water from a wetland in the Greater Blue Mountains World Heritage Area. These wetlands have a unique biodiversity but are fragile and susceptible to degradation from human activity. Many are in urban catchments and are frequently dominated by invasive weeds, including Salix spp. In this study, willow cuttings were grown in a laboratory using four water treatments: pristine, urban, and pristine water exposed to two different concrete materials. The urban and concrete water treatments had higher pH, salinity, calcium, potassium, and higher concentration of several metals and were associated with increased growth of Salix spp. We suggest that the modification of urban water and riparian soil chemistry by urban concrete materials may contribute to the success of invasive species in urban wetlands and riparian zones. Some metals (barium, strontium) were present in urban water and in pristine water exposed to concrete and bioaccumulated in plant tissue.

2013 ◽  
Vol 68 (1) ◽  
pp. 68-75 ◽  
Author(s):  
Bastian Johann Manz ◽  
Juan Pablo Rodríguez ◽  
Čedo Maksimović ◽  
Neil McIntyre

A key control on the response of an urban drainage model is how well the observed rainfall records represent the real rainfall variability. Particularly in urban catchments with fast response flow regimes, the selection of temporal resolution in rainfall data collection is critical. Furthermore, the impact of the rainfall variability on the model response is amplified for water quality estimates, as uncertainty in rainfall intensity affects both the rainfall-runoff and pollutant wash-off sub-models, thus compounding uncertainties. A modelling study was designed to investigate the impact of altering rainfall temporal resolution on the magnitude and behaviour of uncertainties associated with the hydrological modelling compared with water quality modelling. The case study was an 85-ha combined sewer sub-catchment in Bogotá (Colombia). Water quality estimates showed greater sensitivity to the inter-event variability in rainfall hyetograph characteristics than to changes in the rainfall input temporal resolution. Overall, uncertainties from the water quality model were two- to five-fold those of the hydrological model. However, owing to the intrinsic scarcity of observations in urban water quality modelling, total model output uncertainties, especially from the water quality model, were too large to make recommendations for particular model structures or parameter values with respect to rainfall temporal resolution.


2012 ◽  
Vol 66 (7) ◽  
pp. 1527-1533 ◽  
Author(s):  
P. Egodawatta ◽  
N. S. Miguntanna ◽  
A. Goonetilleke

The pollutant impacts of urban stormwater runoff on receiving waters are well documented in research literature. However, it is road surfaces that are commonly identified as the significant pollutant source. This paper presents the outcomes of an extensive program of research into the role of roof surfaces in urban water quality with particular focus on solids, nutrients and organic carbon. The outcomes confirmed that roof surfaces play an important role in influencing the pollutant characteristics of urban stormwater runoff. Pollutant build-up and wash-off characteristics for roads and roof surfaces were found to be appreciably different. The pollutant wash-off characteristics exhibited by roof surfaces show that it influences the first flush phenomenon more significantly than road surfaces. In most urban catchments, as roof surfaces constitute a higher fraction of impervious area compared with road surfaces, it is important that the pollutant generation role of roof surfaces is specifically taken into consideration in stormwater quality mitigation strategies.


2010 ◽  
Vol 61 (9) ◽  
pp. 2381-2390 ◽  
Author(s):  
Gabriele Freni ◽  
Giorgio Mannina ◽  
Gaspare Viviani

The objective of this paper is the definition of a methodology to evaluate the impact of the temporal resolution of rainfall measurements in urban drainage modelling applications. More specifically the effect of the temporal resolution on urban water quality modelling is detected analysing the uncertainty of the response of rainfall–runoff modelling. Analyses have been carried out using historical rainfall–discharge data collected for the Fossolo catchment (Bologna, Italy). According to the methodology, the historical rainfall data are taken as a reference, and resampled data have been obtained through a rescaling procedure with variable temporal windows. The shape comparison between ‘true’ and rescaled rainfall data has been carried out using a non-dimensional accuracy index. Monte Carlo simulations have been carried out applying a parsimonious urban water quality model, using the recorded data and the resampled events. The results of the simulations were used to derive the cumulative probabilities of quantity and quality model outputs (peak discharges, flow volume, peak concentrations and pollutant mass) conditioned on the observation according to the GLUE (Generalized Likelihood Uncertainty Estimation) methodology. The results showed that when coarser rainfall information is available, the model calibration process is still efficient even if modelling uncertainty progressively increases especially with regards to water quality aspects.


2013 ◽  
Vol 21 (8) ◽  
pp. 5297-5310 ◽  
Author(s):  
Masoud Fallah Shorshani ◽  
Céline Bonhomme ◽  
Guido Petrucci ◽  
Michel André ◽  
Christian Seigneur

2010 ◽  
Vol 61 (2) ◽  
pp. 521-536 ◽  
Author(s):  
Gabriele Freni ◽  
Giorgio Mannina ◽  
Gaspare Viviani

In the past three decades, scientific research has focused on the preservation of water resources, and in particular, on the polluting impact of urban areas on natural water bodies. One approach to this research has involved the development of tools to describe the phenomena that take place on the urban catchment during both wet and dry periods. Research has demonstrated the importance of the integrated analysis of all the transformation phases that characterise the delivery and treatment of urban water pollutants from source to outfall. With this aim, numerous integrated urban drainage models have been developed to analyse the fate of pollution from urban catchments to the final receiving waters, simulating several physical and chemical processes. Such modelling approaches require calibration, and for this reason, researchers have tried to address two opposing needs: the need for reliable representation of complex systems, and the need to employ parsimonious approaches to cope with the usually insufficient, especially for urban sources, water quality data. The present paper discusses the application of a bespoke model to a complex integrated catchment: the Nocella basin (Italy). This system is characterised by two main urban areas served by two wastewater treatment plants, and has a small river as the receiving water body. The paper describes the monitoring approach that was used for model calibration, presents some interesting considerations about the monitoring needs for integrated modelling applications, and provides initial results useful for identifying the most relevant polluting sources.


2011 ◽  
Vol 64 (7) ◽  
pp. 1519-1526 ◽  
Author(s):  
A. S. Beenen ◽  
J. G. Langeveld ◽  
H. J. Liefting ◽  
R. H. Aalderink ◽  
H. Velthorst

This paper introduces an integrated approach for the assessment of receiving water quality and the relative contribution of the urban drainage system to perceived receiving water quality problems. The approach combines mass balances with relatively simple receiving water impact models. The research project has learned that the urban drainage system is only one of the determining factors with respect to receiving urban water quality problems. The morphology of the receiving waters and the non-sewer sources of pollution, such as waterbirds, dogs, or inflow of external surface water might be equally important. This conclusion underlines the necessity to changes today's emission based approach and adopt an integral and immission based approach. The integrated approach is illustrated on a case study in Arnhem, where the receiving water quality remained unsatisfactory even after retrofitting a combined sewer system into a separated sewer system.


2012 ◽  
Vol 22 (4) ◽  
pp. 418-429 ◽  
Author(s):  
Richard O. Carey ◽  
George J. Hochmuth ◽  
Christopher J. Martinez ◽  
Treavor H. Boyer ◽  
Vimala D. Nair ◽  
...  

Urban water quality management is becoming an increasingly complex and widespread problem. The long-term viability of aquatic ecosystems draining urban watersheds can be addressed through both regulatory and nutrient and water management initiatives. This review focuses on U.S. regulatory (federal, state, and local) and management (runoff, atmospheric deposition, and wastewater) impacts on urban water quality, specifically emphasizing programs in Florida. Because of rapid population growth in recent decades, and projected increases in the future, appropriate resource management in Florida is essential. Florida enacted stormwater regulations in 1979, before the U.S. Environmental Protection Agency (USEPA) amended the Clean Water Act (CWA) to regulate stormwater discharges. However, in the United States, more research has been conducted on larger structural best management practices (BMPs) (e.g., wet ponds, detention basins, etc.) compared with smaller onsite alternatives (e.g., green roofs, permeable pavements, etc.). For atmospheric deposition, research is needed to investigate processes contributing to enhanced deposition rates. Wastewater (from septic systems, treatment plants, and landfills) management is especially important in urban watersheds. Failing septic systems, elevated nutrient concentrations in discharged effluent, and landfill leachate can all potentially degrade water quality. Proposed numeric nutrient criteria from the USEPA and innovative technologies such as bioreactor landfills are emergent regulatory and management strategies for improved urban water quality.


2017 ◽  
Vol 08 (08) ◽  
pp. 513-530
Author(s):  
Dhiraj Shrestha ◽  
Jianxun He

Sign in / Sign up

Export Citation Format

Share Document