Domestic wastewater treatment by real-scale electrocoagulation process

2020 ◽  
Vol 81 (4) ◽  
pp. 656-667 ◽  
Author(s):  
Serdar Koyuncu ◽  
Sema Arıman

Abstract In this study, domestic wastewaters originating from a settlement with a population of 17,500 were treated by electrocoagulation process in a real-scale EC plant and the economic applicability of the process was investigated. The removal efficiencies of control parameters in the influent and effluent of the real-scale treatment plant such as suspended solids (SS), biological oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP) and changes of pH and conductivity parameters were monitored for 12 months. The obtained data were evaluated according to European Urban Wastewater Treatment Directive, Turkish Water Pollution Control Regulation and Turkish Urban Wastewater Treatment Regulation. According to the results obtained, the removal efficiencies of the pollutant parameters were achieved in the range of 72–83% for SS, 67–80% for COD, 69–81% for BOD, 21–47% for TN and 27–46% for TP. Considering the Turkish wastewater discharge regulations, it can be concluded that the discharge standards for SS, COD and BOD parameters were achieved while they were not achieved in certain periods for TN and TP. In addition, the energy consumption and the operating cost of this real-scale plant were determined to be 0.49–0.54 kWh/m3 and 0.24–0.28 EUR/m3, respectively.

2021 ◽  
Author(s):  
Sema Arıman ◽  
Serdar Koyuncu

Abstract High sulfur content in excess sludge impacts the production of biomethane during anaerobic digestion, mean-while leads to hydrogen sulfide (H2S) formation in biogas. This study aims to reveal the efficiency of the real-scale Biotrickling Filtration Process (BTF) in the removal of H2S in the biogas formed in the anaerobic digester. The biogas was produced by stabilization of the treatment sludges formed in the processes of Urban Wastewater Treatment Plant with mesophilic anaerobic sludge digesters. It was determined that the anaerobic stabilization unit of the treatment plant was operated efficiently and the biogas with a high flow (18,123-21,383 m3/day) was formed during the operation of the plant. The H2S concentration in the biogas at the inlet of the BTF was 3,632 ppmv on average (2,900-4,400 ppmv) and 16 ppmv at the outlet. The elimination capacity of the system reached a maximum of 52.71 gH2S m-3h-1. As a result, a real scale BTF unit was found to provide a sufficient removal efficiency (97.84-99.90%) for H2S in the biogas.


2017 ◽  
Vol 76 (7) ◽  
pp. 1875-1883 ◽  
Author(s):  
Raouen Rachdi ◽  
Feyda Srarfi ◽  
Najet Slim Shimi

The cactus tree, species Opuntia ficus-indica, is a primary material of many products in various domains such as cosmetics, medicine and nutrition. In the present work, we assess its potential as a flocculant. We tried a technique which adopts three sequential treatments that used coagulation, flocculation and sedimentation processes under certain operating conditions. For this purpose, we used the aluminum sulfate (AS) as coagulant and fresh cladodes juice (FCJ) as bioflocculant. All tests were carried out on high turbid urban wastewater collected from the Metlaoui's Wastewater Treatment Plant (MWTP) (in Gafsa in southwest Tunisia). Experiments with this couple AS/FCJ show very interesting results: a high-removal of turbidity (TUR), suspended solids (SS) and chemical oxygen demand (COD). The percentages of abatement of these parameters are respectively 93.65%, 82.75% and 64.30%. The experimental results of the present study prove that the turbidity, SS and COD removal efficiency of new technique is superior to that of conventional process (with only AS). By this technique, we save 50% in AS dose. Moreover, flocs formed by the treatment using AS/FCJ are coarse and readily settleable.


2014 ◽  
Vol 535 ◽  
pp. 346-349
Author(s):  
Mei Wang ◽  
Ming Yang ◽  
Jun Liu ◽  
Jian Fen Li

Effect and benefits of a product or service could be analyzed and evaluated by life cycle assessment during the whole life cycle. Urban sewage treatment plants could improve and control urban water pollution escalating, but it also had certain harm to environment. Effect and benefits of urban wastewater treatment plant A and B were analyzed and evaluated, 13 factors were selected, and comprehensive benefits were researched quantificationally using the method of analytic hierarchy process. It found that urban wastewater treatment plant A who applied A/O process had better benefits than urban wastewater treatment plant B who applied BIOLAK process.


2019 ◽  
Vol 236 ◽  
pp. 253-261 ◽  
Author(s):  
Li Luo ◽  
Mawuli Dzakpasu ◽  
Baichuan Yang ◽  
Wushou Zhang ◽  
Yahong Yang ◽  
...  

2017 ◽  
Vol 28 (4) ◽  
pp. 477-489 ◽  
Author(s):  
Daiane Cristina de Oliveira Garcia ◽  
Liliane Lazzari Albertin ◽  
Tsunao Matsumoto

Purpose The purpose of this paper is to evaluate the efficiency of a duckweed pond in the polishing of a stabilization pond effluent, as well as quantify its biomass production. Once an adequate destination is given to the produced biomass, the wastewater treatment plant can work in a sustainable and integrated way. Design/methodology/approach The duckweed pond consisted of a tank with volume 0.44 m3, operating in continuous flow with an outflow of 0.12 m3/day and hydraulic retention time of 3.8 days. Effluent samples were collected before and after the treatment, with analyzes made: daily-pH, dissolved oxygen and temperature; twice a week – total nitrogen (TN), total phosphorus (TP) and chemical oxygen demand (COD); and weekly – total solids (TS) and Biochemical Oxygen Demand (BOD5). The duckweeds were collected each for seven days for its production quantification. Findings The highest efficiency of TN, TP, COD, BOD5 and TS removal were of 74.67, 66.18, 88.12, 91.14 and 48.9 percent, respectively. The highest biomass production rate was 10.33 g/m2/day in dry mass. Research limitations/implications There was great variation in biomass production, which may be related to the stabilization pond effluent conditions. The evaluation of the effluent composition, which will be treated with duckweeds, is recommended. Practical implications The evaluated treatment system obtained positive results for the reduction in the analyzed variables concentration, being an efficient technology and with operational simplicity for the domestic effluent polishing. Originality/value The motivation of this work was to bring a simple system of treatment and to give value to a domestic wastewater treatment system in a way that, at the same time the effluent polluter level is reduced and it is also possible to produce biomass during the treatment process.


Sign in / Sign up

Export Citation Format

Share Document