scholarly journals FLOOD RISK ASSESSMENT OF MAJOR RIVER BASINS IN THE PHILIPPINES

2019 ◽  
Vol 17 (64) ◽  
Author(s):  
Christian Dominick Q. Alfonso
10.1596/28574 ◽  
2017 ◽  
Author(s):  
Satya Priya ◽  
William Young ◽  
Thomas Hopson ◽  
Ankit Avasthi

2020 ◽  
Vol 20 (3) ◽  
pp. 851-859 ◽  
Author(s):  
C. J. Rubio ◽  
I. S. Yu ◽  
H. Y. Kim ◽  
S. M. Jeong

Abstract This study focuses on index-based flood risk assessment in Metro Manila, the capital region of the Philippines and most densely populated region in the country. Its objective is to properly address urban characteristics in flood risk assessment by introducing a specific urban-type set of physical, social, economic and ecological indicators. Analytical hierarchy process (AHP) was used to quantify the optimal selection weights for each of the selected 14 indicators. Five levels of flood risk will be presented in spatial maps using geographic information system (GIS) ranging from Very Low Risk to Very High Risk. Results of this study are expected to aid in understanding flood hazard and risk in Metro Manila. Moreover, the resulting flood risk information can be used as a decision tool in policy making, land-use planning, developing guidelines and countermeasures and flood disaster insurance.


MethodsX ◽  
2021 ◽  
pp. 101463
Author(s):  
Maurizio Tiepolo ◽  
Elena Belcore ◽  
Sarah Braccio ◽  
Souradji Issa ◽  
Giovanni Massazza ◽  
...  

Atmosphere ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 104 ◽  
Author(s):  
Qiang Liu ◽  
Hongmao Yang ◽  
Min Liu ◽  
Rui Sun ◽  
Junhai Zhang

Cities located in the transitional zone between Taihang Mountains and North China plain run high flood risk in recent years, especially urban waterlogging risk. In this paper, we take Shijiazhuang, which is located in this transitional zone, as the study area and proposed a new flood risk assessment model for this specific geographical environment. Flood risk assessment indicator factors are established by using the digital elevation model (DEM), along with land cover, economic, population, and precipitation data. A min-max normalization method is used to normalize the indices. An analytic hierarchy process (AHP) method is used to determine the weight of each normalized index and the geographic information system (GIS) spatial analysis tool is adopted for calculating the risk map of flood disaster in Shijiazhuang. This risk map is consistent with the reports released by Hebei Provincial Water Conservancy Bureau and can provide reference for flood risk management.


Sign in / Sign up

Export Citation Format

Share Document