Shock waves dynamics and evolution of vortex formation during the interaction of spherical air pulse with aqueous foam layer

2019 ◽  
Vol 14 (2) ◽  
pp. 74-81
Author(s):  
E.F. Gainullina

The numerical study of the powerful air spherical shock-wave pulse interaction with the protective aqueous foam barrier with the initial liquid volume fraction of 0.2 is carried out. The foam layer thickness is selected to satisfy the condition of the non-reflection of compression wave from the foam external boundary at the considered time intervals. In studying the wave flows dynamics, we used the assumption of the foam structure destruction into the microdrops suspension behind the strong shock wave front. The two-phase medium is described on the basis of the gas-droplet mixture model, which includes the laws of conservation of mass, momentum and energy for each phase in accordance with the single-pressure, two-speed, two-temperature approximations in a two-dimensional axisymmetric formulation. The Schiller–Naumann model is used for taking into account the interfacial drag forces. The contact heat transfer influence at the interface between the phases is taken into account by the Ranz–Marshall model. To describe the properties of air and water, the Peng–Robinson and perfect fluid equations of state are used. The numerical implementation of the model is carried out using the OpenFOAM open-source software with the two-step PIMPLE algorithm. The numerical study results are presented as spatial distributions of pressure fields, velocities and streamlines. The significant attenuation of the spherical shock wave intensity during its interaction with the aqueous foam layer has been established. The causes and dynamics of the toroidal vortices series formation in the gas region behind the shock front are investigated. The results reliability is confirmed by comparison with the solutions of the similar problem, found by another numerical method.

2019 ◽  
Vol 14 (2) ◽  
pp. 108-114
Author(s):  
R.Kh. Bolotnova ◽  
E.F. Gainullina ◽  
E.A. Nurislamova

The two-phase model of dry aqueous foam dynamic behavior under the strong shock wave influence is presented under assumption that the foam structure under shock loading is destroyed into a suspension of monodispersed microdrops with the formation of a gas-droplet mixture. The system of equations for the model of aqueous foam includes the laws of conservation of mass, momentum and energy for each phase in accordance with the single-pressure, two-speed, two-temperature approximations in a three-dimensional formulation, taking into account the Schiller–Naumann interfacial drag force and the Ranz–Marshall interfacial contact heat transfer. The thermodynamic properties of air and water forming a gas-droplet mixture are described by the Peng–Robinson and Mie–Grueneisen equations of state. The presence of non-uniform process in height of aqueous foam syneresis, which is due to gravitational forces, is taken into account by setting the distribution of the liquid volume fraction in the foam. An additional consideration of the syneresis process during calculating the intensity of interphase drag forces according to the Schiller–Naumann model was controlled by introducing the parameter depending on the spatial distribution of the initial liquid volume fraction of the foam. The spherical explosion is modeled in the form of the shock wave pulse whose energy coincided with the charge energy of the HE used in the experiments. The problem numerical solution is implemented using the OpenFOAM free software package based on the two-step PIMPLE computational algorithm. The numerical solution of the problem, obtained on the basis of the proposed gas-droplet mixture model, is in satisfactory agreement with the experimental data on a spherical explosion in aqueous foam. The analysis of the spherical shock wave dynamics while its propagation through aqueous foam is given. The causes of the significant decrease in the amplitude and velocity shock waves propagation in the medium under study are investigated.


2013 ◽  
Vol 20 (8) ◽  
pp. 082702 ◽  
Author(s):  
A. Vallet ◽  
X. Ribeyre ◽  
V. Tikhonchuk

2021 ◽  
Vol 15 (4) ◽  
pp. 685-690
Author(s):  
S. V. Khomik ◽  
I. V. Guk ◽  
A. N. Ivantsov ◽  
S. P. Medvedev ◽  
E. K. Anderzhanov ◽  
...  

1964 ◽  
Vol 54 (2) ◽  
pp. 737-754
Author(s):  
Sathyanarayana Hanagud

ABSTRACT The mechanical behavior of some types of soils can be idealized by that of a “Locking Solid.” This paper investigates the spherical shock wave and the stress distribution behind the wave in a simple locking solid due to a sudden explosion at the surface of a small spherical cavity. The cases of infinitesimal and finite deformations are considered. The effect of an elastic shear resistance and the consequent phenomenon of “unlocking” are also studied.


1972 ◽  
Author(s):  
Samuel Lederman ◽  
Edward F. Dawson ◽  
Prem K. Khosla

2019 ◽  
Author(s):  
Kento Inokuma ◽  
Tomoaki Watanabe ◽  
Koji Nagata ◽  
Yasuhiko Sakai

Sign in / Sign up

Export Citation Format

Share Document