Modeling of the spherical explosion attenuation process using aqueous foam

2019 ◽  
Vol 14 (2) ◽  
pp. 108-114
Author(s):  
R.Kh. Bolotnova ◽  
E.F. Gainullina ◽  
E.A. Nurislamova

The two-phase model of dry aqueous foam dynamic behavior under the strong shock wave influence is presented under assumption that the foam structure under shock loading is destroyed into a suspension of monodispersed microdrops with the formation of a gas-droplet mixture. The system of equations for the model of aqueous foam includes the laws of conservation of mass, momentum and energy for each phase in accordance with the single-pressure, two-speed, two-temperature approximations in a three-dimensional formulation, taking into account the Schiller–Naumann interfacial drag force and the Ranz–Marshall interfacial contact heat transfer. The thermodynamic properties of air and water forming a gas-droplet mixture are described by the Peng–Robinson and Mie–Grueneisen equations of state. The presence of non-uniform process in height of aqueous foam syneresis, which is due to gravitational forces, is taken into account by setting the distribution of the liquid volume fraction in the foam. An additional consideration of the syneresis process during calculating the intensity of interphase drag forces according to the Schiller–Naumann model was controlled by introducing the parameter depending on the spatial distribution of the initial liquid volume fraction of the foam. The spherical explosion is modeled in the form of the shock wave pulse whose energy coincided with the charge energy of the HE used in the experiments. The problem numerical solution is implemented using the OpenFOAM free software package based on the two-step PIMPLE computational algorithm. The numerical solution of the problem, obtained on the basis of the proposed gas-droplet mixture model, is in satisfactory agreement with the experimental data on a spherical explosion in aqueous foam. The analysis of the spherical shock wave dynamics while its propagation through aqueous foam is given. The causes of the significant decrease in the amplitude and velocity shock waves propagation in the medium under study are investigated.

2019 ◽  
Vol 14 (2) ◽  
pp. 74-81
Author(s):  
E.F. Gainullina

The numerical study of the powerful air spherical shock-wave pulse interaction with the protective aqueous foam barrier with the initial liquid volume fraction of 0.2 is carried out. The foam layer thickness is selected to satisfy the condition of the non-reflection of compression wave from the foam external boundary at the considered time intervals. In studying the wave flows dynamics, we used the assumption of the foam structure destruction into the microdrops suspension behind the strong shock wave front. The two-phase medium is described on the basis of the gas-droplet mixture model, which includes the laws of conservation of mass, momentum and energy for each phase in accordance with the single-pressure, two-speed, two-temperature approximations in a two-dimensional axisymmetric formulation. The Schiller–Naumann model is used for taking into account the interfacial drag forces. The contact heat transfer influence at the interface between the phases is taken into account by the Ranz–Marshall model. To describe the properties of air and water, the Peng–Robinson and perfect fluid equations of state are used. The numerical implementation of the model is carried out using the OpenFOAM open-source software with the two-step PIMPLE algorithm. The numerical study results are presented as spatial distributions of pressure fields, velocities and streamlines. The significant attenuation of the spherical shock wave intensity during its interaction with the aqueous foam layer has been established. The causes and dynamics of the toroidal vortices series formation in the gas region behind the shock front are investigated. The results reliability is confirmed by comparison with the solutions of the similar problem, found by another numerical method.


2020 ◽  
Vol 15 (3-4) ◽  
pp. 159-166
Author(s):  
E.F. Gainullina

Numerical simulation of the spherical shock pulse propagation in aqueous foam with volumetric liquid fraction of 0.0083 has been carried out in accordance with the published experimental data on the explosion of HE in aqueous foam. The assumption is used that the foam structure is destroyed by the shock wave, which leads to the transformation of the foam into a monodisperse gas-droplet mixture. The system of equations for the two-phase gas-droplet model of aqueous foam includes the laws of conservation of mass, momentum, energy for each phase and the equation for the dynamics of the volumetric liquid fraction in a single-pressure, two-velocity, two-temperature approximations in a three-dimensional formulation and takes into account the forces of the Schiller-Naumann interfacial drag, the Ranz-Marshall interphase contact heat exchange and the effect of foam syneresis on the initial distribution of its volumetric liquid fraction. Realistic equations of state in the form of Peng-Robinson and Mie-Gruneisen are used to describe the thermodynamic properties of air and water that make up a gas-droplet mixture. Numerical modeling of the processes under consideration was carried out in the open software of computational fluid dynamics OpenFOAM using the finite volume method based on the iterative two-step PIMPLE algorithm. The analysis of the effect of foam syneresis on the dynamics of shock pulse in aqueous foam is given. It was found that the uneven distribution of the liquid fraction in the foam, caused by its sedimentation under the gravity, leads to the increase in the shock pulse velocity in upper layers of the foam. In comparative analysis of numerical solutions and experimental data at sensor locations, the importance of taking into account syneresis phenomena in modeling the dynamics of shock wave in aqueous foam is shown. The reliability of calculations obtained by the proposed model is confirmed by their agreement with experimental data.


2016 ◽  
Vol 11 (1) ◽  
pp. 60-65 ◽  
Author(s):  
R.Kh. Bolotnova ◽  
E.F. Gainullina

The spherical explosion propagation process in aqueous foam with the initial water volume content α10=0.0083 corresponding to the experimental conditions is analyzed numerically. The solution method is based on the one-dimensional two-temperature spherically symmetric model for two-phase gas-liquid mixture. The numerical simulation is built by the shock capturing method and movable Lagrangian grids. The amplitude and the width of the initial pressure pulse are found from the amount of experimental explosive energy. The numerical modeling results are compared to the real experiment. It’s shown, that the foam compression in the shock wave leads to the significant decrease in velocity and in amplitude of the shock wave.


2005 ◽  
Vol 40 ◽  
pp. 179-184 ◽  
Author(s):  
C. Bock ◽  
H. Eicken

AbstractThe microstructural evolution of brine inclusions in granular and columnar sea ice has been investigated through magnetic resonance imaging (MRI) for temperatures between –28 and –3˚C. Thin-section and salinity measurements were completed on core samples obtained from winter sea ice near Barrow, Alaska, USA. Subsamples of granular (2–5cm depth in core) and columnar sea ice (20–23 cm depth) were investigated with morphological spin-echo and diffusion-weighted imaging in a Bruker 4.7T MRI system operating at field gradients of 200 mTm–1 at temperatures of approximately –28, –15, –6 and –3˚C. Average linear pore dimensions range from 0.2 to 1 mm and increase with bulk liquid volume fraction as temperatures rise from –15 to –3˚C. Granular ice pores are significantly larger than columnar ice pores and exhibit a higher degree of connectivity. No evidence is found of strongly non-linear increases in pore connectivity based on the MRI data. This might be explained by shortcomings in resolution, sensitivity and lack of truly three-dimensional data, differences between laboratory and field conditions or the absence of a percolation transition. Pore connectivity increases between –6 and –3˚C. Pore-number densities average at 1.4±1.2mm–2. The pore-number density distribution as a function of cross-sectional area conforms with power-law and lognormal distributions previously identified, although significant variations occur as a function of ice type and temperature. At low temperatures (< –26˚C), pore sizes were estimated from 1H self-diffusivity measurements, with self-diffusivity lower by up to an order of magnitude than in the free liquid. Analysis of diffusional length scales suggests characteristic pore dimensions of <1 μm at < –26˚C.


Author(s):  
Luis San Andrés ◽  
Xueliang Lu

Wet gas compression systems and multiphase pumps are enabling technologies for the deep sea oil and gas industry. This extreme environment determines both machine types have to handle mixtures with a gas in liquid volume fraction (GVF) varying over a wide range (0 to 1). The gas (or liquid) content affects the system pumping (or compression) efficiency and reliability, and places a penalty in leakage and rotordynamic performance in secondary flow components, namely seals. In 2015, tests were conducted with a short length smooth surface annular seal (L/D = 0.36, radial clearance = 0.127 mm) operating with an oil in air mixture whose liquid volume fraction (LVF) varied to 4%. The test results with a stationary journal show the dramatic effect of a few droplets of liquid on the production of large damping coefficients. This paper presents further measurements and predictions of leakage, drag power, and rotordynamic force coefficients conducted with the same test seal and a rotating journal. The seal is supplied with a mixture (air in ISO VG 10 oil), varying from a pure liquid to an inlet GVF = 0.9 (mostly gas), a typical range in multiphase pumps. For operation with a supply pressure (Ps) up to 3.5 bar (a), discharge pressure (Pa) = 1 bar (a), and various shaft speed (Ω) to 3.5 krpm (ΩR = 23.3 m/s), the flow is laminar with either a pure oil or a mixture. As the inlet GVF increases to 0.9 the mass flow rate and drag power decrease monotonically by 25% and 85% when compared to the pure liquid case, respectively. For operation with Ps = 2.5 bar (a) and Ω to 3.5 krpm, dynamic load tests with frequency 0 < ω < 110 Hz are conducted to procure rotordynamic force coefficients. A direct stiffness (K), an added mass (M) and a viscous damping coefficient (C) represent well the seal lubricated with a pure oil. For tests with a mixture (GVFmax = 0.9), the seal dynamic complex stiffness Re(H) increases with whirl frequency (ω); that is, Re(H) differs from (K-ω2M). Both the seal cross coupled stiffnesses (KXY and −KYX) and direct damping coefficients (CXX and CYY) decrease by approximately 75% as the inlet GVF increases to 0.9. The finding reveals that the frequency at which the effective damping coefficient (CXXeff = CXX-KXY/ω) changes from negative to positive (i.e., a crossover frequency) drops from 50% of the rotor speed (ω = 1/2 Ω) for a seal with pure oil to a lesser magnitude for operation with a mixture. Predictions for leakage and drag power based on a homogeneous bulk flow model match well the test data for operation with inlet GVF up to 0.9. Predicted force coefficients correlate well with the test data for mixtures with GVF up to 0.6. For a mixture with a larger GVF, the model under predicts the direct damping coefficients by as much as 40%. The tests also reveal the appearance of a self-excited seal motion with a low frequency; its amplitude and broad band frequency (centered at around ∼12 Hz) persist and increase as the gas content in the mixture increase. The test results show that an accurate quantification of wet seals dynamic force response is necessary for the design of robust subsea flow assurance systems.


2019 ◽  
Vol 245 ◽  
pp. 106859
Author(s):  
Joaquín López ◽  
Julio Hernández ◽  
Pablo Gómez ◽  
Claudio Zanzi ◽  
Rosendo Zamora

2020 ◽  
Vol 61 (2) ◽  
Author(s):  
Lukas Weiss ◽  
Michael Wensing ◽  
Joonsik Hwang ◽  
Lyle M. Pickett ◽  
Scott A. Skeen

2019 ◽  
Vol 21 (2) ◽  
pp. 248-262 ◽  
Author(s):  
David Markt ◽  
Ashish Pathak ◽  
Mehdi Raessi ◽  
Seong-Young Lee ◽  
Roberto Torelli

This article uniquely characterizes the secondary droplets formed during the impingement of a train of ethanol drops, using three-dimensional direct numerical simulations performed under conditions studied experimentally by Yarin and Weiss. Our numerical results have been previously validated against experimental data demonstrating the ability to accurately capture the splashing dynamics. In this work, the predictive ability of the model is leveraged to gain further insight into secondary droplet formation. We present a robust post-processing algorithm, which scrutinizes the liquid volume fraction field in the volume-of-fluid method and quantifies the number, volume and velocity of secondary droplets. The high-resolution computational simulations enable secondary droplet characterization within close proximity of the impingement point at small length and time scales, which is extremely challenging to achieve experimentally. By studying the temporal evolution of secondary droplet formation, direct connections are made between liquid structures seen in the simulation and the instantaneous distribution of secondary droplets, leading to detailed insight into the instability-driven breakup process of lamellae. Time-averaged secondary droplet characteristics are also studied to describe the global distribution of secondary droplets. Such analysis is vital to understanding fuel drop impingement in direct injection engines, facilitating the development of highly accurate spray–wall interaction models for use in Lagrangian solvers.


Sign in / Sign up

Export Citation Format

Share Document