SIMULATION OF ATTACK ON SYNCHRONIZATION NETWORK CONTROL SYSTEM

Author(s):  
A. K. Kanaev ◽  
◽  
A. N. Gorbach ◽  
E. V. Oparin, ◽  
◽  
...  
2013 ◽  
Vol 846-847 ◽  
pp. 795-798
Author(s):  
Jiao Meng ◽  
Qi Hua Xu ◽  
Xiao Xiao

Improving network control system---NCS reliability and safety has important practical significance because NCS is a hot research subject in these years. Fault diagnosis methods are researched in this paper according to NCS with long-time delay and data packet loss. Firstly, given a NCS with long-time delay, a state observer is structured. Secondly, make the state estimation error equation equivalent to an asynchronous dynamical system having event incidence constraint according to whether the system having data packets loss. The problem of fault diagnosis is converted to filtering problem through structuring filtering residual system based on the observer, then giving a corresponding filter designing algorithm. The designed fault diagnosis filter system not only make sure the stability of the closed loop system but also make the residual systems norm less than given reduction level. Finally, the simulation results prove that the algorithm can diagnose faults effectively.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xinzhi Feng ◽  
Yang Yang ◽  
Xiaozhong Qi ◽  
Chunming Xu ◽  
Ze Ji

In recent years, the research of the network control system under the event triggering mechanism subjected to network attacks has attracted foreign and domestic scholars’ wide attention. Among all kinds of network attacks, denial-of-service (DoS) attack is considered the most likely to impact the performance of NCS significantly. The existing results on event triggering do not assess the occurrence of DoS attacks and controller changes, which will reduce the control performance of the addressed system. Aiming at the network control system attacked by DoS, this paper combines double-ended elastic event trigger control, DoS attack, and quantitative feedback control to study the stability of NCS with quantitative feedback of DoS attack triggered by a double-ended elastic event. Simulation examples show that this method can meet the requirements of control performance and counteract the known periodic DoS attacks, which save limited resources and improve the system’s antijamming ability.


Sign in / Sign up

Export Citation Format

Share Document