INVERSE PROBLEM SOLUTION OF THE MATHEMATICAL MODELING FOR GALVANIC PROCESS TO OPTIMIZE THE NON-UNIFORMITY OF THE COATING THICKNESS

2020 ◽  
Vol 49 (1) ◽  
pp. 131-143
Author(s):  
Denis S. Solovjev ◽  
◽  
Inna A. Solovjeva ◽  
Yuri V. Litovka ◽  
◽  
...  
2021 ◽  
Vol 1037 ◽  
pp. 581-588
Author(s):  
Inna A. Solovjeva ◽  
Denis S. Solovjev ◽  
Yuri V. Litovka

The article considers the influence of the surface geometry of a detail on the deposition of coating thickness in the simulation of electroplating processes. The methods for obtaining sets of points describing the surface of a detail are analyzed. Solving the inverse problem (recovering the 3D surface of a detail according to its 2D drawings) is the most promising method. The inverse problem solution is decomposed into simpler geometric problems: input data processing; obtaining primitives; obtaining the desired surface of a detail by applying logical operations to primitives. Mathematical statements are formulated and solution algorithms are proposed for solving these problems. The inverse problem solution is implemented through software. The distribution of the nickel coating thickness is shown for a detail, the surface of which is obtained by solving the inverse problem.


Author(s):  
Wit Stryczniewicz ◽  
Janusz Zmywaczyk ◽  
Andrzej Jaroslaw Panas

Purpose The paper aims to discuss the inverse heat conduction methodology in solution of a certain parameter identification problem. The problem itself concerns determination of the thermophysical properties of a thin layer coating by applying the laser flash apparatus. Design/methodology/approach The modelled laser flash diffusivity data from the three-layer sample investigation are used as input for the following parameter estimation procedure. Assuming known middle layer, i.e. substrate properties, the thermal diffusivity (TD) of the side layers’ material is determined. The estimation technique utilises the finite element method for numerical solution of the direct, 2D axisymmetric heat conduction problem. Findings The paper presents methodology developed for a three-layer sample studies and results of the estimation technique testing and evaluation based on simulated data. The multi-parametrical identification procedure results in identification of the out of plane thin layer material diffusivity from the inverse problem solution. Research limitations/implications The presentation itself is limited to numerical simulation data, but it should be underlined that the flake graphite thermophysical parameters have been utilised in numerical tests. Practical implications The developed methodology is planned to be applied in detailed experimental studies of flake graphite. Originality/value In the course of a present study, a methodology of the thin-coating layer TD determination was developed. In spite of the fact that it has been developed for the graphite coating investigation, it was planned to be universal in application to any thin–thick composite structure study.


1991 ◽  
Vol 130 ◽  
pp. 309-320 ◽  
Author(s):  
N.E. Piskunov

AbstractWe intend to analyze the reliability of surface imaging of stars based on high resolution spectroscopy and the technique of inverse problem solution. Both astrophysical and mathematical aspects including different regularization methods are reviewed. The influence of the different factors on the resulting map is discussed and it is shown that the simultaneous use of different kinds of observational data (spectroscopy, photometry, polarimetry etc.) is very useful in providing additional constraints for the solution. The recent results in the surface imaging of Cp- and late-type stars show the way for further progress: the use of more adequate mathematical description of the stellar atmosphere and the simultaneous consideration of various surface inhomogeneities.


Sign in / Sign up

Export Citation Format

Share Document