scholarly journals Study of the Efficiency of Methods for Enhanced Condensate Recovery, Based on Reservoir Simulation Models

Author(s):  
Evgeny S. Makarov ◽  
Anton Y. Yushkov ◽  
Alexander S. Romanov
Author(s):  
Klaus Rollmann ◽  
Aurea Soriano-Vargas ◽  
Forlan Almeida ◽  
Alessandra Davolio ◽  
Denis Jose Schiozer ◽  
...  

2021 ◽  
Author(s):  
Mokhles Mezghani ◽  
Mustafa AlIbrahim ◽  
Majdi Baddourah

Abstract Reservoir simulation is a key tool for predicting the dynamic behavior of the reservoir and optimizing its development. Fine scale CPU demanding simulation grids are necessary to improve the accuracy of the simulation results. We propose a hybrid modeling approach to minimize the weight of the full physics model by dynamically building and updating an artificial intelligence (AI) based model. The AI model can be used to quickly mimic the full physics (FP) model. The methodology that we propose consists of starting with running the FP model, an associated AI model is systematically updated using the newly performed FP runs. Once the mismatch between the two models is below a predefined cutoff the FP model is switch off and only the AI model is used. The FP model is switched on at the end of the exercise either to confirm the AI model decision and stop the study or to reject this decision (high mismatch between FP and AI model) and upgrade the AI model. The proposed workflow was applied to a synthetic reservoir model, where the objective is to match the average reservoir pressure. For this study, to better account for reservoir heterogeneity, fine scale simulation grid (approximately 50 million cells) is necessary to improve the accuracy of the reservoir simulation results. Reservoir simulation using FP model and 1024 CPUs requires approximately 14 hours. During this history matching exercise, six parameters have been selected to be part of the optimization loop. Therefore, a Latin Hypercube Sampling (LHS) using seven FP runs is used to initiate the hybrid approach and build the first AI model. During history matching, only the AI model is used. At the convergence of the optimization loop, a final FP model run is performed either to confirm the convergence for the FP model or to re iterate the same approach starting from the LHS around the converged solution. The following AI model will be updated using all the FP simulations done in the study. This approach allows the achievement of the history matching with very acceptable quality match, however with much less computational resources and CPU time. CPU intensive, multimillion-cell simulation models are commonly utilized in reservoir development. Completing a reservoir study in acceptable timeframe is a real challenge for such a situation. The development of new concepts/techniques is a real need to successfully complete a reservoir study. The hybrid approach that we are proposing is showing very promising results to handle such a challenge.


Author(s):  
Juliana Santos ◽  
Daiane Rossi Rosa ◽  
Denis José Schiozer ◽  
Alessandra Davolio

2021 ◽  
Author(s):  
Jim Browning ◽  
Sheldon Gorell

Abstract Economic optimization of a reservoir can be extremely tedious and time consuming. It is particularly difficult with many wells, some of which can become non-economic within the simulated time period. These problems can be mitigated by: 1) analyzing the results of a simulation once it has run, or 2) applying injection or production constraints at the well level. An example of option 1 would be integration with a spreadsheet or economic simulation package after the simulation has run. An example of option 2 would be to set a maximum water cut, upon which the well constraints could be changed, or the well could be shut in within the simulation. Both of these methods have drawbacks. If the goal is to account for how changes in a well operating strategy affects other wells, then analysis after the fact requires many runs to sequentially identify and modify well constraints at the correct times and in the correct order. In contrast, applying injection and production constraints to wells is not the same as applying true economic constraints. The objective of this work was to develop an automated method which includes economic considerations within the simulator to decrease the amount of time optimizing a single model and allows more time to analyze uncertainty within the economic decision making process. This study developed automated methods and procedures to include economic calculations within the context of a standard reservoir simulation. The method utilized modifications to available conditional logic features to internally include and export key economic metrics to support appropriate automatic field development changes. This method was tested using synthetic models with different amounts of wells and operating conditions. It was validated using after the fact calculations on a well by well basis to confirm the process. People costs are always among the most significant associated with running a business. Therefore, it is imperative for people to be as efficient and productive as possible. The method presented in this study significantly reduces the amount of time and effort associated with tedious and manual manipulations of simulation models. These savings enable an organization to focus on more value-added activities including, but not limited to, accurately optimizing and estimating of uncertainty associated decisions supported by reservoir simulation.


Sign in / Sign up

Export Citation Format

Share Document