A note on dynamic rock typing and TEM-function for grouping, averaging and assigning relative permeability data to reservoir simulation models

Author(s):  
Abouzar Mirzaei-Paiaman ◽  
Behzad Ghanbarian
2021 ◽  
Author(s):  
Carlos Esteban Alfonso ◽  
Frédérique Fournier ◽  
Victor Alcobia

Abstract The determination of the petrophysical rock-types often lacks the inclusion of measured multiphase flow properties as the relative permeability curves. This is either the consequence of a limited number of SCAL relative permeability experiments, or due to the difficulty of linking the relative permeability characteristics to standard rock-types stemming from porosity, permeability and capillary pressure. However, as soon as the number of relative permeability curves is significant, they can be processed under the machine learning methodology stated by this paper. The process leads to an automatic definition of relative permeability based rock-types, from a precise and objective characterization of the curve shapes, which would not be achieved with a manual process. It improves the characterization of petrophysical rock-types, prior to their use in static and dynamic modeling. The machine learning approach analyzes the shapes of curves for their automatic classification. It develops a pattern recognition process combining the use of principal component analysis with a non-supervised clustering scheme. Before this, the set of relative permeability curves are pre-processed (normalization with the integration of irreducible water and residual oil saturations for the SCAL relative permeability samples from an imbibition experiment) and integrated under fractional flow curves. Fractional flow curves proved to be an effective way to unify the relative permeability of the two fluid phases, in a unique curve that characterizes the specific poral efficiency displacement of this rock sample. The methodology has been tested in a real data set from a carbonate reservoir having a significant number of relative permeability curves available for the study, in addition to capillary pressure, porosity and permeability data. The results evidenced the successful grouping of the relative permeability samples, according to their fractional flow curves, which allowed the classification of the rocks from poor to best displacement efficiency. This demonstrates the feasibility of the machine learning process for defining automatically rock-types from relative permeability data. The fractional flow rock-types were compared to rock-types obtained from capillary pressure analysis. The results indicated a lack of correspondence between the two series of rock-types, which testifies the additional information brought by the relative permeability data in a rock-typing study. Our results also expose the importance of having good quality SCAL experiments, with an accurate characterization of the saturation end-points, which are used for the normalization of the curves, and a consistent sampling for both capillary pressure and relative permeability measurements.


2007 ◽  
Vol 10 (06) ◽  
pp. 730-739 ◽  
Author(s):  
Genliang Guo ◽  
Marlon A. Diaz ◽  
Francisco Jose Paz ◽  
Joe Smalley ◽  
Eric A. Waninger

Summary In clastic reservoirs in the Oriente basin, South America, the rock-quality index (RQI) and flow-zone indicator (FZI) have proved to be effective techniques for rock-type classifications. It has long been recognized that excellent permeability/porosity relationships can be obtained once the conventional core data are grouped according to their rock types. Furthermore, it was also observed from this study that the capillary pressure curves, as well as the relative permeability curves, show close relationships with the defined rock types in the basin. These results lead us to believe that if the rock type is defined properly, then a realistic permeability model, a unique set of relative permeability curves, and a consistent J function can be developed for a given rock type. The primary purpose of this paper is to demonstrate the procedure for implementing this technique in our reservoir modeling. First, conventional core data were used to define the rock types for the cored intervals. The wireline log measurements at the cored depths were extracted, normalized, and subsequently analyzed together with the calculated rock types. A mathematical model was then built to predict the rock type in uncored intervals and in uncored wells. This allows the generation of a synthetic rock-type log for all wells with modern log suites. Geostatistical techniques can then be used to populate the rock type throughout a reservoir. After rock type and porosity are populated properly, the permeability can be estimated by use of the unique permeability/porosity relationship for a given rock type. The initial water saturation for a reservoir can be estimated subsequently by use of the corresponding rock-type, porosity, and permeability models as well as the rock-type-based J functions. We observed that a global permeability multiplier became unnecessary in our reservoir-simulation models when the permeability model is constructed with this technique. Consistent initial-water-saturation models (i.e., calculated and log-measured water saturations are in excellent agreement) can be obtained when the proper J function is used for a given rock type. As a result, the uncertainty associated with volumetric calculations is greatly reduced as a more accurate initial-water-saturation model is used. The true dynamic characteristics (i.e., the flow capacity) of the reservoir are captured in the reservoir-simulation model when a more reliable permeability model is used. Introduction Rock typing is a process of classifying reservoir rocks into distinct units, each of which was deposited under similar geological conditions and has undergone similar diagenetic alterations (Gunter et al. 1997). When properly classified, a given rock type is imprinted by a unique permeability/porosity relationship, capillary pressure profile (or J function), and set of relative permeability curves (Gunter et al. 1997; Hartmann and Farina 2004; Amaefule et al. 1993). As a result, when properly applied, rock typing can lead to the accurate estimation of formation permeability in uncored intervals and in uncored wells; reliable generation of initial-water-saturation profile; and subsequently, the consistent and realistic simulation of reservoir dynamic behavior and production performance. Of the various quantitative rock-typing techniques (Gunter et al. 1997; Hartmann and Farina 2004; Amaefule et al. 1993; Porras and Campos 2001; Jennings and Lucia 2001; Rincones et al. 2000; Soto et al. 2001) presented in the literature, two techniques (RQI/FZI and Winland's R35) appear to be used more widely than the others for clastic reservoirs (Gunter et al. 1997, Amaefule et al. 1993). In the RQI/FZI approach (Amaefule et al. 1993), rock types are classified with the following three equations: [equations]


2009 ◽  
Vol 12 (01) ◽  
pp. 96-103 ◽  
Author(s):  
Saud M. Al-Fattah ◽  
Hamad A. Al-Naim

Summary Determination of relative permeability data is required for almost all calculations of fluid flow in petroleum reservoirs. Water/oil relative permeability data play important roles in characterizing the simultaneous two-phase flow in porous rocks and predicting the performance of immiscible displacement processes in oil reservoirs. They are used, among other applications, for determining fluid distributions and residual saturations, predicting future reservoir performance, and estimating ultimate recovery. Undoubtedly, these data are considered probably the most valuable information required in reservoir simulation studies. Estimates of relative permeability are generally obtained from laboratory experiments with reservoir core samples. In the absence of the laboratory measurement of relative permeability data, developing empirical correlations for obtaining accurate estimates of relative permeability data showed limited success, and proved difficult, especially for carbonate reservoir rocks. Artificial-neural-network (ANN) technology has proved successful and useful in solving complex structured and nonlinear problems. This paper presents a new modeling technology to predict accurately water/oil relative permeability using ANN. The ANN models of relative permeability were developed using experimental data from waterflood-core-tests samples collected from carbonate reservoirs of giant Saudi Arabian oil fields. Three groups of data sets were used for training, verification, and testing the ANN models. Analysis of results of the testing data set show excellent agreement with the experimental data of relative permeability. In addition, error analyses show that the ANN models developed in this study outperform all published correlations. The benefits of this work include meeting the increased demand for conducting special core analysis (SCAL), optimizing the number of laboratory measurements, integrating into reservoir simulation and reservoir management studies, and providing significant cost savings on extensive lab work and substantial required time.


2021 ◽  
Author(s):  
Abdur Rahman Shah ◽  
Kassem Ghorayeb ◽  
Hussein Mustapha ◽  
Samat Ramatullayev ◽  
Nour El Droubi ◽  
...  

Abstract One of the most important aspects of any dynamic model is relative permeability. To unlock the potential of large relative permeability data bases, the proposed workflow integrates data analysis, machine learning, and artificial intelligence (AI). The workflow allows for the automated generation of a clean database and a digital twin of relative permeability data. The workflow employs artificial intelligence to identify analogue data from nearby fields by extending the rock typing scheme across multiple fields for the same formation. We created a fully integrated and intelligent tool for extracting SCAL data from laboratory reports, then processing and modeling the data using AI and automation. After the endpoints and Corey coefficients have been extracted, the quality of the relative permeability samples is checked using an automated history match and simulation of core flood experiments. An AI model that has been trained is used to identify analogues for various rock types from other fields that produce from the same formations. Finally, based on the output of the AI model, the relative permeabilities are calculated using data from the same and analog fields. The workflow solution offers a solid and well-integrated methodology for creating a clean database for relative permeability. The workflow made it possible to create a digital twin of the relative permeability data using the Corey and LET methods in a systematic manner. The simulation runs were designed so that the pressure measurements are history matched with the adjustment and refinement of the relative permeability curve. The AI workflow enabled us to realize the full potential of the massive database of relative permeability samples from various fields. To ensure utilization in the dynamic model, high, mid, and low cases were created in a robust manner. The workflow solution employs artificial intelligence models to identify rock typing analogues from the same formation across multiple fields. The AI-generated analogues, combined with a robust workflow for quickly QC’ing the relative permeability data, allow for the creation of a fully integrated relative permeability database. The proposed solution is agile and scalable, and it can adapt to any data and be applied to any field.


2008 ◽  
Vol 11 (06) ◽  
pp. 1082-1088 ◽  
Author(s):  
John D. Matthews ◽  
Jonathan N. Carter ◽  
Robert W. Zimmerman

Summary Relative permeabilities are fundamental to any assessment of reserves and reservoir management. When measurements on core samples are available, however, they often predict initial water production that is not experienced by individual wells. For example, dry oil production occurs from portions of reservoirs where the local water saturation is relatively high, even though the relative permeability data would predict a water cut in the range of 30 to 60%. This lack of agreement means that effective reservoir management is hampered because it is difficult for simulation models to mimic the observed reservoir production without use of data that may bear little resemblance to measurements. After a brief discussion of relative permeability, the focus of this paper is first to examine the uncertainties in the data that are used for the predictions. This then provides a numerically structured approach to adjustments that need to be made to data so that history matching of simulation models can be achieved. The relative permeabilities, rather than saturations and fluid properties, are shown to be the least certain of the relevant data. The second focus in the paper is to explore the reasons why the relative permeability data are so uncertain. The evidence points to the fact that oil emplacement and the subsequent geological history of the reservoirs have not been considered sufficiently in preparing core samples before making measurements. Greater reliance on drillstem and early production tests is, therefore, crucial for deriving reservoir relative permeabilities until laboratories are able to mimic oil emplacement within rock samples as experienced in the reservoir. The main source of data is the abandoned UK North Sea reservoir Maureen (Block 16/29a). Inevitably, during the 36 years since discovery, some data have been misplaced. Nevertheless, sufficient data exist to highlight the potential need for a paradigm shift in understanding how relative permeabilities should be obtained for reservoir simulation. Introduction There are many examples of dry oil production from portions of reservoirs where the local water saturation is relatively high (Matthews 2004). On the occasions when relative permeability data are available, predictions of the expected water cut are not zero but typically in the range of 30 to 60%. A particular example is that of the abandoned UK North Sea reservoir Maureen (Cutts 1991). This lack of agreement means that effective reservoir management is hampered because it is difficult for simulation models to mimic the observed early reservoir production without use of data that may bear little resemblance to measurements. The focus of this paper is first to examine the uncertainties in the data that are used for the predictions. The Maureen reservoir--its data were placed in the public domain for research and training purposes by Phillips after it was abandoned (Gringarten et al. 2000)--provides the main source of information. The data examined are viscosity, saturation, and relative permeability. Having established which data are the most uncertain, the paper then includes a brief discussion of the transition zone and oil emplacement to understand the nature of the uncertainties in relative permeability measurements and, in particular, measurements of the irreducible water saturation. From this, a new avenue of research related to oil emplacement can be identified that, if pursued, may lead ultimately to better reservoir-management models.


Sign in / Sign up

Export Citation Format

Share Document