scholarly journals Hg removal from SRTC laboratory waste using an in-tank ion exchange probe

1992 ◽  
Author(s):  
J.P. Bibler ◽  
J.J. DeGange
1992 ◽  
Vol 25 (3) ◽  
pp. 165-172 ◽  
Author(s):  
J. A. Ritter ◽  
J. P. Bibler

Duolite™ GT-73 ion exchange resin routinely reduces the mercury content of a waste water stream to less than the permitted level of 10 ppb. Effluent concentrations from the ion exchange facility (IEF) are consistently between 1 to 5 ppb, even though the feed contains a varying concentration of mercury (0.2 to 70 ppm). Two operational problems have been encountered at that facility, however. Firstly, the stated capacity of the resin for mercury was not being achieved. The abnormally low capacity was traced to analytical laboratory waste which was intermittently treated by the resin. That waste contained hydrochloric acid, stannous chloride, and potassium permanganate, among other chemicals, which presumably eluted sorbed mercury from the resin and also oxidized the thiol (SH) functional groups on the resin and rendered them inactive. The net effect was that the resin had to be replaced more frequently than anticipated. Secondly, the IEF was temporarily shut down because the mercury content of the waste water could not be reduced to below the permitted level, even with fresh resin. That problem was caused by slow settling solids composed mainly of iron which apparently adsorbed some of the mercury and allowed it to pass through the resin untreated. The solids were presumably a result of processing waste water abnormally high in iron which may have co-precipitated with mercury and other elements in the feed and caused a residual buildup of solids throughout the IEF. The problem was remedied by installing a 0.2 µm cartridge filter between the feed tank and the columns.


Author(s):  
Ann M. Thomas ◽  
Virginia Shemeley

Those samples which swell rapidly when exposed to water are, at best, difficult to section for transmission electron microscopy. Some materials literally burst out of the embedding block with the first pass by the knife, and even the most rapid cutting cycle produces sections of limited value. Many ion exchange resins swell in water; some undergo irreversible structural changes when dried. We developed our embedding procedure to handle this type of sample, but it should be applicable to many materials that present similar sectioning difficulties.The purpose of our embedding procedure is to build up a cross-linking network throughout the sample, while it is in a water swollen state. Our procedure was suggested to us by the work of Rosenberg, where he mentioned the formation of a tridimensional structure by the polymerization of the GMA biproduct, triglycol dimethacrylate.


1988 ◽  
Vol 49 (C8) ◽  
pp. C8-937-C8-938
Author(s):  
O. Kalogirou ◽  
A. C. Stergiou ◽  
D. Samaras ◽  
S. Nicolopoulos ◽  
A. Bekka ◽  
...  

Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
AA Abdelgadir ◽  
L Boudesocque-Delaye ◽  
I Thery-Koné ◽  
A Gueiffier ◽  
EM Ahmed ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document