scholarly journals Consequences of Modification of Photosystem Stoichiometry and Amount in Cyanobacteria

2016 ◽  
Author(s):  
Willem Vermaas

Light-induced absorbance change and fluorescence measurements were employed in the quantitation of photosystem stoichiometry and in the measurement of the chlorophyll (Chl) antenna size in thylakoid membranes. Results with thylakoid membranes from diverse photosynthetic tissues indicated a PSII/PSI reaction-centre stoichiometry that deviates from unity. Cyanobacteria and red algae have a PSII/PSI ratio in the range of 0.3 to 0.7. Chloroplasts from spinach and other vascular-plant species grown under direct sunlight have PSII/PSI = 1.8±0.3. Chlorophyll b -deficient and Chi b -lacking mutants have PSII/PSI > 2. The observation that PSII/PSI ratios are not unity and show a large variation among different photosynthetic membranes appears to be contrary to the conventional assumption derived from the Z-scheme. However, the photosystem stoichiometry is not the only factor that needs to be taken into account to explain the coordination of the two photosystems in the process of linear electron transport. The light-harvesting capacity of each photosystem must also be considered. In cyanobacterial thylakoids (from Synechococcus 6301, PSII/PSI = 0.5±0.2), the phycobilisome-PSII complexes collectively harvest as much light as the PSI complexes. In vascular plant chloroplasts, the light-harvesting capacity of a PSI I complex (250 molecules, Chi a/Chi b = 1.7) is lower than that of a PSI complex (230 Chl, Chl a /Chl b = 8.0) because Chi b has a lower extinction coefficient than Chi a . A differential attenuation of light intensity through the grana further reduces the light absorbed by PSII. Hence, a PSII/PSI ratio greater than one in vascular-plant chloroplasts compensates for the lower absorption of light by individual PSII complexes and ensures that, on average, PSII will harvest about as much light as PSI. In conclusion, distinct light-harvesting strategies among diverse plant species complement widely different photosystem stoichiometries to ensure a balanced absorption of light and a balanced electron flow between the two photoreactions, thereby satisfying the requirement set forth upon the formulation of the Z-scheme by Hill & Bendall ( Nature, Lond. 186, 136-137 (1960)) and by Duysens, Amesz & Kamp ( Nature, Lond . 190, 510-511 (1961)).


2012 ◽  
Vol 1817 (9) ◽  
pp. 1525-1536 ◽  
Author(s):  
Kodru Sireesha ◽  
Balaga Radharani ◽  
Pilla Sankara Krishna ◽  
Nellaepalli Sreedhar ◽  
Rajagopal Subramanyam ◽  
...  

1996 ◽  
Vol 47 (3) ◽  
pp. 253-265 ◽  
Author(s):  
Anastasios Melis ◽  
Akio Murakami ◽  
Jeff A. Nemson ◽  
Katsunori Aizawa ◽  
Kaori Ohki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document