scholarly journals Constraining ejecta particle size distributions with light scattering

2018 ◽  
Author(s):  
Martin Michael Schauer ◽  
William Tillman Buttler ◽  
Derek William Schmidt ◽  
John Israel Martinez ◽  
Daniel K. Frayer ◽  
...  
2007 ◽  
Vol 561-565 ◽  
pp. 2155-2158
Author(s):  
H. Taib ◽  
Charles C. Sorrell

The particle size distributions of tin oxide powders produced from the calcining of precipitated tin oxalate were determined by four methods, these being two static and two dynamic light scattering techniques. Although the individual particle sizes were ~ 75 nm, all of the powders were heavily agglomerated as plates. The non-spherical shape resulted in the following interpretational problems: • None of the measurements was in agreement with any others. • There were very significant disagreements between the two light scattering methods. • The particle size distributions were multimodal. • The main peaks in the distribution curves, which were used to calculate the averages and standard deviations, were not Gaussian. The main uncertainty with these data is associated with the non-spherical agglomerates, which result in the multimodal size distributions. These probably were caused by variable-sized but large platy agglomerates.


Sign in / Sign up

Export Citation Format

Share Document