scholarly journals Status of the Full Circumference Examination of the Inner Container Closure Weld Region for Selected 3013 DE Container

2018 ◽  
Author(s):  
Rodriguez M. Martinez
Author(s):  
Itaru Muroya ◽  
Youichi Iwamoto ◽  
Naoki Ogawa ◽  
Kiminobu Hojo ◽  
Kazuo Ogawa

In recent years, the occurrence of primary water stress corrosion cracking (PWSCC) in Alloy 600 weld regions of PWR plants has increased. In order to evaluate the crack propagation of PWSCC, it is required to estimate stress distribution including residual stress and operational stress through the wall thickness of the Alloy 600 weld region. In a national project in Japan for the purpose of establishing residual stress evaluation method, two test models were produced based on a reactor vessel outlet nozzle of Japanese PWR plants. One (Test model A) was produced using the same welding process applied in Japanese PWR plants in order to measure residual stress distribution of the Alloy 132 weld region. The other (Test model B) was produced using the same fabrication process in Japanese PWR plants in order to measure stress distribution change of the Alloy 132 weld region during fabrication process such as a hydrostatic test, welding a main coolant pipe to the stainless steel safe end. For Test model A, residual stress distribution was obtained using FE analysis, and was compared with the measured stress distribution. By comparing results, it was confirmed that the FE analysis result was in good agreement with the measurement result. For mock up test model B, the stress distribution of selected fabrication processes were measured using the Deep Hole Drilling (DHD) method. From these measurement results, it was found that the stress distribution in thickness direction at the center of the Alloy 132 weld line was changed largely during welding process of the safe end to the main coolant pipe.


2021 ◽  
Vol 22 (3) ◽  
Author(s):  
Ashwin C. Parenky ◽  
Saurabh Wadhwa ◽  
Hunter H. Chen ◽  
Amardeep S. Bhalla ◽  
Kenneth S. Graham ◽  
...  

AbstractIntravitreal (IVT) administration of therapeutics is the standard of care for treatment of back-of-eye disorders. Although a common procedure performed by retinal specialists, IVT administration is associated with unique challenges related to drug product, device and the procedure, which may result in adverse events. Container closure configuration plays a crucial role in maintaining product stability, safety, and efficacy for the intended shelf-life. Careful design of primary container configuration is also important to accurately deliver small volumes (10-100 μL). Over- or under-dosing may lead to undesired adverse events or lack of efficacy resulting in unpredictable and variable clinical responses. IVT drug products have been traditionally presented in glass vials. However, pre-filled syringes offer a more convenient administration option by reducing the number of steps required for dose preparation there by potentially reducing the time demand on the healthcare providers. In addition to primary container selection, product development studies should focus on, among other things, primary container component characterization, material compatibility with the formulation, formulation stability, fill volume determination, extractables/leachables, and terminal sterilization. Ancillary components such as disposable syringes and needles must be carefully selected, and a detailed administration procedure that includes dosing instructions is required to ensure successful administration of the product. Despite significant efforts in improving the drug product and administration procedures, ocular safety concerns such as endophthalmitis, increased intraocular pressure, and presence of silicone floaters have been reported. A systematic review of available literature on container closure and devices for IVT administration can help guide successful product development.


Author(s):  
Roman Mathaes ◽  
Hanns-Christian Mahler ◽  
Jean-Pierre Buettiker ◽  
Holger Roehl ◽  
Philippe Lam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document