Residual Stress Evaluation of Dissimilar Weld Joint Using Reactor Vessel Outlet Nozzle Mock-Up Model (Report-1)

Author(s):  
Itaru Muroya ◽  
Youichi Iwamoto ◽  
Naoki Ogawa ◽  
Kiminobu Hojo ◽  
Kazuo Ogawa

In recent years, the occurrence of primary water stress corrosion cracking (PWSCC) in Alloy 600 weld regions of PWR plants has increased. In order to evaluate the crack propagation of PWSCC, it is required to estimate stress distribution including residual stress and operational stress through the wall thickness of the Alloy 600 weld region. In a national project in Japan for the purpose of establishing residual stress evaluation method, two test models were produced based on a reactor vessel outlet nozzle of Japanese PWR plants. One (Test model A) was produced using the same welding process applied in Japanese PWR plants in order to measure residual stress distribution of the Alloy 132 weld region. The other (Test model B) was produced using the same fabrication process in Japanese PWR plants in order to measure stress distribution change of the Alloy 132 weld region during fabrication process such as a hydrostatic test, welding a main coolant pipe to the stainless steel safe end. For Test model A, residual stress distribution was obtained using FE analysis, and was compared with the measured stress distribution. By comparing results, it was confirmed that the FE analysis result was in good agreement with the measurement result. For mock up test model B, the stress distribution of selected fabrication processes were measured using the Deep Hole Drilling (DHD) method. From these measurement results, it was found that the stress distribution in thickness direction at the center of the Alloy 132 weld line was changed largely during welding process of the safe end to the main coolant pipe.

Author(s):  
Naoki Ogawa ◽  
Itaru Muroya ◽  
Youichi Iwamoto ◽  
Kiminobu Hojo ◽  
Kazuo Ogawa ◽  
...  

In recent years, the occurrence of primary water stress corrosion cracking (PWSCC) in Alloy 600 weld regions of PWR plants has increased. In order to evaluate the crack propagation of PWSCC, it is required to estimate stress distribution including residual stress and operational stress through the wall thickness of the Alloy 600 weld region. In a national project in Japan for the purpose of establishing residual stress evaluation method, a test model was produced using the same fabrication process in Japanese PWR plants in order to measure stress distribution change of the Alloy 132 weld region during fabrication process such as a hydrostatic test, welding a main coolant pipe to the stainless steel safe end and operation condition test. For the mock up test model, the stress distribution of selected fabrication processes was measured using the Deep Hole Drilling (DHD) method. From the measurement results, it was found that the stress distribution in thickness direction at the center of the Alloy 132 weld line was hardly varied with the hydrostatic test at site and operating condition test history. FE analysis was performed to calculate the stress distributions for each fabrication process. Comparing with measurement results, the validity of the FE analysis was confirmed. From the validation procedure, a standard residual stress evaluation method was established.


2020 ◽  
Vol 64 (04) ◽  
pp. 384-391
Author(s):  
Tetyana Gurova ◽  
Segen F. Estefen ◽  
Anatoli Leontiev ◽  
Plinio T. Barbosa ◽  
Valentin Zhukov ◽  
...  

Repair by welding is widely used in the shipbuilding industry during ship construction. The effect of the residual stress distribution induced by the welding process on the ship structure is important for the repair effectiveness. This article presents an experimental study of the residual stress distribution induced by repair welding in the plates that are typically used in ships and offshore structures. Different repair techniques are evaluated to identify the best practice associated with residual stress values. Recommendations for repair welding are discussed, and modifications to the present practice are proposed.


Author(s):  
Woo-sik Kim ◽  
Jong-hyun Baek ◽  
Choel-man Kim ◽  
Young-pyo Kim

The following cases of girth welded region between pipelines having different base strength were considered. The pipeline shows different fracture behavior from girth welded pipeline between similar materials due to strength mismatch and residual stress distribution. Investigation about the residual stress distribution and fracture behavior of pipeline having girth welds of the differnet base metals (X70/X65 and X70/X42) with different material property has performed using finite element analysis. The effect of mismatched material property on girth weld region is negligible when shape of pipeline is similar. The assessment for occurance of crack on girth weld region with pipes with material property mismatched can be replaced by that of the similar pipes with low strength on the point view of conservation.


2012 ◽  
Vol 155-156 ◽  
pp. 1218-1222
Author(s):  
Lei Wang ◽  
Mitsuyosi Tsunori

Residual stress distribution plays a very important role in welded structures, the aim of present work is to find out the effect of different welding methods on the residual stress distribution by means of neutron diffraction measurements and FE models simulation. 4 mm thick DH-36 steel plates were butt welded by MIG welding process and 5 mm thick AA 2024 aluminium alloy plates were butt welded by friction stir welding process. Results show that residual stresses of MIG welding process are higher than those of friction stir welding process. The peak residual stress of MIG weld is close to the room temperature uniaxial yield strength of DH-36 while the peak residual stress of friction stir weld is just about 50% of the room temperature uniaxial yield strength of AA2024. The size effect of MIG welded and effect of welding speeds of friction stir welded on the residual stress distribution have also been studied in the paper.


Author(s):  
Bai-Qiao Chen ◽  
C. Guedes Soares

This work investigates the temperature distribution, deformation and residual stress in steel plates as a result of different sequences of welding. The single-pass gas tungsten arc welding process is simulated by a three dimensional nonlinear thermo-elasto-plastic approach. It is observed that the distribution of residual stress varies through the direction of plate thickness. It is concluded that the welding sequence affects not only the welding deformation but also the residual stress mainly in the lower layer of the plates. An in-depth discussion on the pattern of residual stress distribution is presented, especially on the width of the tension zone. Smaller residual tension zone and slightly lower compressive stress are found in thicker plate.


ce/papers ◽  
2017 ◽  
Vol 1 (2-3) ◽  
pp. 4276-4282
Author(s):  
Evy Van Puymbroeck ◽  
Wim Nagy ◽  
Ken Schotte ◽  
Zain Ul-Abdin ◽  
Hans De Backer

Author(s):  
Jose de Jesus L. Carvajalino ◽  
José Luiz F. Freire ◽  
Vitor Eboli L. Paiva ◽  
José Eduardo Maneschy ◽  
Jorge G. Diaz ◽  
...  

This paper presents a structural integrity evaluation of a duplex stainless steel pressure vessel containing several flaws detected in a longitudinal weld. The evaluation had the objective of determining whether the pressure vessel was suitable to continue in operation or whether it should be immediately repaired or even replaced. Due to timely issues, a first analysis was conducted in accordance with the 2007 edition of the API 579-1/ASME FFS-1 Standard [1]. A second analysis was later repeated based on the 2016 edition [1]. Results obtained from both analyses were compared and presented relevant differences caused by the other calculation procedures used to determine residual stresses generated in the longitudinal welding. The assessment was based on the Failure Assessment Diagram (FAD). The existing indications were detected by ultrasonic examination and were located in one longitudinal weld. The assessment evaluations used stress intensity factors for the opening mode I, KI, obtained for two cases: 1) the combination of the several supposedly interacting cracks into an equivalent crack using the interaction criteria presented in [1]; 2) the allocation of the multiple cracks into a finite element model that took into consideration, more realistically, the interaction among the individual cracks. The total loads and stresses considered in the analysis resulted from a superposition of the design pressure stress and the residual stresses induced by the welding process. Due to lack of information on the material fracture toughness for the duplex stainless steel used in the vessel, the material toughness was estimated using a lower bound value suggested in [1] for common welded stainless austenitic steels, although higher values can be predicted for duplex steels by extending the use of a transition master curve as presented and discussed elsewhere [2–7] and by employing specific Charpy test results for the vessel material. One of the key aspects of the problem was the calculation of the residual stress distribution imposed by the welding process. Two procedures were adopted: one available in the API/ASME Standard issued in 2007, and the other in the 2016 release. The results presented in this paper have demonstrated that the limits of the Standard 2007 are conservatively satisfied when the Level 3 assessment is applied. The re-analysis of the vessel when subjected to the residual stress distribution presented in the newest 2016 edition leads to consider the vessel safe under an assessment Level 2. The overall conclusion was that the damaged pressure vessel could continue in service under restrictions of the development of an inspection plan to verify the absence of future crack growth.


2014 ◽  
Vol 936 ◽  
pp. 2011-2016 ◽  
Author(s):  
Zakaria Boumerzoug ◽  
Kelthoum Digheche ◽  
Vincent Ji

X-ray diffraction method has been used to analyze the residual stress distribution in weld region of an X70 pipeline steel before and after heat treatment. The welding process has been realized by industrial arc welding with circular weld seams. The effect of heat treatments on the level and the distribution of residual stresses were investigated. Stress distribution was characterized by relative high compressive stresses in weld seam just after welding. However, residual stress relaxation phenomenon was observed in weld region after heat treatments due to microstructure restoration and recrystalization. Optical microscope observation and Vickers hardness measurements were also realized as complementary microstructure characterization techniques.


2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Keiji Nakacho ◽  
Naoki Ogawa ◽  
Takahiro Ohta ◽  
Michisuke Nayama

The stress that exists in a body under no external force is called the inherent stress. The strain that is the cause (source) of this stress is called the inherent strain. This study proposes a general theory of an inherent-strain-based measurement method for the residual stress distributions in arbitrary three-dimensional bodies and applies the method to measure the welding residual stress distribution of a welded joint in a reactor vessel. The inherent-strain-based method is based on the inherent strain and the finite element method. It uses part of the released strains and solves an inverse problem by a least squares method. Thus, the method gives the most probable value and deviation of the residual stress. First, the basic theory is explained in detail, and then a concrete measurement method for a welded joint in a reactor vessel is developed. In the method, the inherent strains are unknowns. In this study, the inherent strain distribution was expressed with an appropriate function, significantly decreasing the number of unknowns. Five types of inherent strain distribution functions were applied to estimate the residual stress distribution of the joint. The applicability of each function was evaluated. The accuracy and reliability of the analyzed results were assessed in terms of the residuals, the unbiased estimate of the error variance, and the welding mechanics. The most suitable function, which yields the most reliable result, was identified. The most reliable residual stress distributions of the joint are shown, indicating the characteristics of distributions with especially large tensile stress that may produce a crack.


Author(s):  
Masahito Mochizuki ◽  
Ryohei Ihara ◽  
Jinya Katsuyama ◽  
Makoto Udagawa

Stress corrosion cracking (SCC) has been observed near the welded zones of pipes made of austenitic stainless steel type 316L. Residual stress is an important factor for SCC. In the joining processes of pipes, butt welding is conducted after surface machining. Residual stress is generated by both processes, and the residual stress distribution by surface machining is varied by the subsequent butt-welding process. In this study, numerical analysis of the residual stress distribution by butt welding after surface machining was performed by the finite element method. The SCC initiation time was estimated by the residual stress obtained at the inner surface. SCC growth analyses based on probability fracture mechanics were performed by using the SCC initiation time and the residual stress distribution. As a result, the residual stress distribution in the axial direction due to butt welding after surface machining has high tensile stress exceeding 1000 MPa at the inner surface. The effect of SCC initiation on leakage probability is not as significant as the effect of plastic strain on the crack growth rate. However, to perform crack growth analyses considering SCC initiation, evaluation of the residual stress due to surface machining and welding is important.


Sign in / Sign up

Export Citation Format

Share Document