scholarly journals IC Project: Magnetic Reconnection versus Shocks: First-principles Kinetic Simulations of Major Particle Acceleration Mechanisms in the Universe

2019 ◽  
Author(s):  
Fan Guo
2022 ◽  
Author(s):  
Emily Riehl ◽  
Dominic Verity

The language of ∞-categories provides an insightful new way of expressing many results in higher-dimensional mathematics but can be challenging for the uninitiated. To explain what exactly an ∞-category is requires various technical models, raising the question of how they might be compared. To overcome this, a model-independent approach is desired, so that theorems proven with any model would apply to them all. This text develops the theory of ∞-categories from first principles in a model-independent fashion using the axiomatic framework of an ∞-cosmos, the universe in which ∞-categories live as objects. An ∞-cosmos is a fertile setting for the formal category theory of ∞-categories, and in this way the foundational proofs in ∞-category theory closely resemble the classical foundations of ordinary category theory. Equipped with exercises and appendices with background material, this first introduction is meant for students and researchers who have a strong foundation in classical 1-category theory.


2020 ◽  
Vol 235 ◽  
pp. 07003
Author(s):  
Yingchao Lu ◽  
Fan Guo ◽  
Patrick Kilian ◽  
Hui Li ◽  
Chengkun Huang ◽  
...  

A rotating pulsar creates a surrounding pulsar wind nebula (PWN) by steadily releasing an energetic wind into the interior of the expanding shockwave of supernova remnant or interstellar medium. At the termination shock of a PWN, the Poynting-flux- dominated relativistic striped wind is compressed. Magnetic reconnection is driven by the compression and converts magnetic energy into particle kinetic energy and accelerating particles to high energies. We carrying out particle-in-cell (PIC) simulations to study the shock structure as well as the energy conversion and particle acceleration mechanism. By analyzing particle trajectories, we find that many particles are accelerated by Fermi-type mechanism. The maximum energy for electrons and positrons can reach hundreds of TeV.


2000 ◽  
Vol 195 ◽  
pp. 443-444
Author(s):  
B. T. Welsch ◽  
D. W. Longcope

“Transient brightenings” (or “microflares”) regularly deposit 1027 ergs of energy in the solar corona, and account for perhaps 20% of the active corona's power (Shimizu 1995). We assume these events correspond to episodes of magnetic reconnection along magnetic separators in the solar corona. Using the techniques of magnetic charge topology, we model active region fields as arising from normally distributed collections of “magnetic charges”, point-like sources/sinks of flux (or field lines). Here, we present statistically determined separator (X-ray loop) lengths, derived from first principles. We are in the process of statistical calculations of heating rates due to reconnection events along many separators.


Sign in / Sign up

Export Citation Format

Share Document