scholarly journals Stochastic Approaches for Calculating and Aggregating Detection Probabilities for Nuclear Material Diversion

2021 ◽  
Author(s):  
Sukesh Aghara ◽  
Jose Gomera ◽  
Sukesh Aghara ◽  
Lohith Annadevula ◽  
Logan Joyce ◽  
...  
2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
E. Bonner ◽  
T. Burr ◽  
T. Krieger ◽  
K. Martin ◽  
C. Norman

Nuclear safeguards aim to confirm that nuclear materials and activities are used for peaceful purposes. To ensure that States are honoring their safeguards obligations, quantitative conclusions regarding nuclear material inventories and transfers are needed. Statistical analyses used to support these conclusions require uncertainty quantification (UQ), usually by estimating the relative standard deviation (RSD) in random and systematic errors associated with each measurement method. This paper has two main components. First, it reviews why UQ is needed in nuclear safeguards and examines recent efforts to improve both top-down (empirical) UQ and bottom-up (first-principles) UQ for calibration data. Second, simulation is used to evaluate the impact of uncertainty in measurement error RSDs on estimated nuclear material loss detection probabilities in sequences of measured material balances.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Byung Hee Won ◽  
Hee-Sung Shin ◽  
Se Hwan Park ◽  
Seong-Kyu Ahn

The Nuclear Material Accounting (NMA) system is one of the main safeguards measures to detect the existence of nuclear material diversion. It has become more important for large reprocessing facilities to apply Near Real Time Accountancy (NRTA) system based on NMA and statistical techniques to meet quantitative and timeliness goals. It is also important to quantitatively evaluate the performance of NMA system including NRTA from the standpoints of Safeguards and Security by Design (SSBD) prior to construction of nuclear-material-handling facilities. Such evaluation improves safeguards effectiveness and efficiency. Modeling and Simulation (M&S) work is a good way to evaluate performance for various NMA systems and to determine the optimal one among different options. For these purposes, in the present study, the PYroprocessing Material flow and MUF Uncertainty Simulation+ (PYMUS+) code, which uses evaluation algorithms to calculate many safeguards factors such as MUF uncertainty, detection probability, and others, was developed. According to a previous report, the PYMUS code, the predecessor of PYMUS+, can calculate MUF uncertainties only for a fixed model having 10 tHM/year, whereas the PYMUS+ code can additionally calculate detection probabilities according to diverse nuclear diversion scenarios as well as MUF uncertainties. The most important feature of the PYMUS+ code is its capability to evaluate many process and NMA system model options that a user wants to evaluate. Furthermore, a user can make a static process model having simplicity and a matching NMA model based on the PYMUS+ code regardless of facility throughput and is not even required to have professional programming knowledge. In the present work, some intercomparative studies were conducted to verify the M&S techniques applied in this code. It is expected that this code will be a useful tool for evaluation of NRTA system of pyroprocessing and other reprocessing facilities.


2019 ◽  
Author(s):  
Chris Gazze ◽  
Sukesh Aghara ◽  
Ian Bleeker ◽  
Lohith Annadevula ◽  
Ahmad Nofal ◽  
...  

2018 ◽  
Author(s):  
Kirk Patrick Reeves ◽  
Tristan Karns ◽  
Timothy Amos Stone ◽  
Joshua Edward Narlesky ◽  
Holden Christopher Hyer ◽  
...  

2021 ◽  
Vol 11 (5) ◽  
pp. 2198
Author(s):  
Junwoo Jung ◽  
Jaesung Lim ◽  
Sungyeol Park ◽  
Haengik Kang ◽  
Seungbok Kwon

A frequency hopping orthogonal frequency division multiple access (FH-OFDMA) can provide low probability of detection (LPD) and anti-jamming capabilities to users against adversary detectors. To obtain an extreme LPD capability that cannot be provided by the basic symbol-by-symbol (SBS)-based FH pattern, we proposed two FH patterns, namely chaotic standard map (CSM) and cat map for FH-OFDMA systems. In our previous work, through analysis of complexity to regenerate the transmitted symbol sequence, at the point of adversary detectors, we found that the CSM had a lower probability of intercept than the cat map and SBS. It is possible when a detector already knows symbol and frame structures, and the detector has been synchronized to the FH-OFDMA system. Unlike the previous work, here, we analyze whether the CSM provides greater LPD capability than the cat map and SBS by detection probability using spectrum sensing technique. We analyze the detection probability of the CSM and provide detection probabilities of the cat map and SBS compared to the CSM. Based on our analysis of the detection probability and numerical results, it is evident that the CSM provides greater LPD capability than both the cat map and SBS-based FH-OFDMA systems.


Sign in / Sign up

Export Citation Format

Share Document