scholarly journals Water jet penetration of a high-velocity gas stream in cross flow

1967 ◽  
Author(s):  
M.J. Margetts ◽  
E.L. Geery
2015 ◽  
Vol 76 ◽  
pp. 67-74 ◽  
Author(s):  
Yiyu Lu ◽  
Fei Huang ◽  
Xiaochuan Liu ◽  
Xiang Ao

2020 ◽  
Author(s):  
Nicholas S. Tavouktsoglou ◽  
Aggelos Dimakopoulos ◽  
Jeremy Spearman ◽  
Richard J. S. Whitehouse

Abstract Submerged water jet causing soil excavation is a typical water-soil interaction process that occurs widely in many engineering disciplines. In hydraulic engineering for instance, a typical example would be scour downstream of headcuts, culverts, or dam spillways. In port and waterway engineering, erosion of the channel bed or quay wall by the propellers of passing ships are also typical water jet/soil interaction problems. In ocean engineering, trenching by impinging high-velocity water jets has been used as an efficient method for cable and pipeline burial. At present, physical modelling and simple prediction equations have been the main practical engineering tool for evaluating scour in these situations. However, with the increasing computational power of modern computers and the development of new Computational Fluid Dynamics (CFD) solvers, scour prediction in such engineering problems has become possible. In the present work three-dimensional (3D) numerical modelling has been applied to reproduce the capability of a pair of water jets to backfill an excavated trench. The simulations are carried out using a state-of-the-art three-dimensional Eulerian two-phase scour model based on the open source CFD software OpenFOAM. The fluid phase is resolved by solving modified Navier-Stokes equations, which take into consideration the influence of the solid phase, i.e., the soil particles. This paper first presents a validation of the numerical model against vertical jet erosion tests from the literature and conducted at HR Wallingford. The results of the model show good agreement with the experimental tests, with the numerical model predicting the scour hole depth and extent with good accuracy. The paper then presents a validation of the model’s ability to reproduce deposition which is evaluated through a comparison with settling velocity data and empirical formulations found in literature, again with the model showing good agreement. Finally, the model is applied to a prototype cable burial problem using a commercially available controlled flow jet excavator. The study found that the use of water jets can be effective (subject to confirmation of the time-scale required for real operations) for performing backfill operations but that the effectiveness is closely related to the type of sediment and selection of an appropriate jet discharge. As a result, in order for the water jet method to be effective for backfill, there is a requirement for a good description of the variation in sediment type along the trench and a requirement for the jet discharge to be varied as different sediment types are encountered.


1984 ◽  
Vol 148 ◽  
pp. 405-412 ◽  
Author(s):  
J. E. Broadwell ◽  
R. E. Breidenthal

The flow field induced by a jet in incompressible cross-flow is analysed and the results compared with those obtained in a reacting water-jet experiment. It is argued that the axial vortex pair in the flow arises from the jet momentum normal to the free stream, the momentum flux being equivalent to a normal force, i.e. to a lift.


2016 ◽  
Vol 52 (5) ◽  
pp. 497-513 ◽  
Author(s):  
V. A. Arkhipov ◽  
V. E. Zarko ◽  
I. K. Zharova ◽  
A. S. Zhukov ◽  
E. A. Kozlov ◽  
...  

1976 ◽  
Vol 16 (1) ◽  
pp. 21-25 ◽  
Author(s):  
D. G. Smith ◽  
R. Kinslow

Sign in / Sign up

Export Citation Format

Share Document