scholarly journals Environmentally assisted crack growth in high strength steels

1975 ◽  
Author(s):  
J. Munford
2018 ◽  
Vol 1146 ◽  
pp. 44-56 ◽  
Author(s):  
János Lukács ◽  
Ádám Dobosy ◽  
Marcell Gáspár

The objective of the paper is to present the newest results of our complex research work. In order to determination and comparison of the fatigue resistance, fatigue crack growth tests were performed on different grades of S690QL quenched and tempered, and S960TM thermomechanically rolled high strength steels.15 mmand30 mmthick base materials were used for our investigations. Welded joints were made from these base materials, using gas metal arc welding with matching, overmatching, and undermatching filler metals. In the paper, the performance of the welding experiments will be presented, especially with the difficulties of the filler material selection; along with the results of the fatigue crack growth examinations executed on the base materials and its welded joints. Statistical aspects were applied both for the presenting of the possible locations of the cracks in the base materials and the welded joints and for the processing of the measured data. Furthermore, the results will be compared with each other, and the possibility of derivation of fatigue crack propagation limit curves will be referred.


2014 ◽  
Vol 891-892 ◽  
pp. 563-568 ◽  
Author(s):  
János Lukács ◽  
Marcell Gaspar

There are different prescriptions containing fatigue crack propagation limit curves and rules for the prediction of the crack growth. The research work aimed (i) to determine fatigue crack propagation limit curves for high strength steels and their welded joints, based on the Paris-Erdogan law; (ii) to use the determined limit curves for engineering critical assessment (ECA) calculations. Experiments were performed on different high strength steels and their welded joints; and the propagating cracks in the specimens represent the different possible locations of the real cracks in the structural elements. Fatigue crack growth tests were executed byΔK-decreasing and constant load amplitude methods. The evaluation process consists of six steps, and by means of the selected values a statistical method can be proposed for determination of the limit curves. Engineering critical assessment calculations were performed on a welded structural element having crack like defects.


Author(s):  
Stephen J. Hudak ◽  
Guadalupe B. Robledo ◽  
Jeffrey Hawk

Although new high-strength steels have recently been developed to meet the demands of increased reservoir pressures, and sour production fluids, the corrosion-fatigue performance of these new higher-strength materials is largely unknown. The goal of this study was to fill this knowledge gap by generating corrosion-fatigue data in two aggressive environments: 1) a sour production brine, and 2) seawater with cathodic protection. The focus of the current paper is on stress-life (S-N) corrosion-fatigue results in these environments, as well as a baseline air environment. Experiments were performed on five different steels with yield strengths ranging from 848 MPa to 1080 MPa. Prior frequency-scan results based on corrosion-fatigue crack growth rate data demonstrated that not all of these material-environment combinations exhibit a saturation frequency where the detrimental environmental effect approached a constant value as the cyclic loading frequency is decreased. Consequently, S-N tests were performed at different frequencies (0.01 Hz, 0.17 Hz, and 1 Hz), depending on the fatigue life regime, in attempting to match the loading frequencies experienced in service. Corrosion-fatigue occurred at stresses well below the fatigue endurance limit in laboratory air, and cyclic lives in the seawater with cathodic protection environment were found to be 2X to 10X less than those in the baseline air environment, while cyclic lives in the sour brine environment were found to be 30X to 100X less than those in the baseline air environment. In both environments, degradation was greatest at lower stresses in the high cycle fatigue regime. The effect of material strength level had little or no measurable effect on the S-N corrosion-fatigue performance, and the effect of cyclic frequency on the corrosion-fatigue performance was mixed. The S-N response to these two variables differed significantly from recently measured fatigue crack growth kinetics in these same materials that were performed in a companion study. Possible reasons for these differences are discussed.


Sign in / Sign up

Export Citation Format

Share Document