scholarly journals HYDROGEN AND OXYGEN ISOTOPES APPLIED TO THE STUDY OF WATER-METAL REACTIONS. EXCHANGE OF D$sub 2$O$sup 18$ WITH ALPHA ALUMINA MONOHYDRATE

1958 ◽  
Author(s):  
R.B. Bernstein
Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 264 ◽  
Author(s):  
Zhiming Han ◽  
Xiaohong Shi ◽  
Keli Jia ◽  
Biao Sun ◽  
Shengnan Zhao ◽  
...  

This study examined the discharge and recharge relationships between lake and groundwater in Lake Hulun using a novel tracer method that tracks hydrogen and oxygen isotopes and chloride ions. The hydrogen and oxygen isotopes in precipitation falling in the Lake Hulun Basin were compared with those in water samples from the lake and from the local river, well and spring water during both freezing and non-freezing periods in 2017. The results showed that the local meteoric water line equation in the Lake Hulun area is δD = 6.68 δ18O − 5.89‰ (R2 = 0.96) and the main source of water supply in the study area is precipitation. Long-term groundwater monitoring data revealed that the groundwater is effectively recharged by precipitation through the aeration zone. Exchanges between the various compounds during the strong evaporative fractionation process in groundwater are responsible for the gradual depletion of δ18O. The lake is recharged by groundwater during the non-freezing period, as shown in the map constructed to show the recharge and discharge relationships between the lake and groundwater. The steadily rising lake water levels in the summer mean that the water level before the freeze is high and consequently the water in the lake drains into the surrounding groundwater via faults along both sides of the lake during the frozen period. The groundwater is discharged into the lake in the west and into the Urson River in the east due to the Cuogang uplift.


2016 ◽  
Vol 223 ◽  
pp. 775-780 ◽  
Author(s):  
Haimeng Sun ◽  
Zhen Hu ◽  
Jian Zhang ◽  
Weizhong Wu ◽  
Shuang Liang ◽  
...  

2019 ◽  
Vol 17 (1) ◽  
pp. 105-115 ◽  
Author(s):  
Jiao-Jiao Han ◽  
Xu Duan ◽  
Yang-Yi Zhao ◽  
Meng Li

AbstractSoil moisture, stable hydrogen, and oxygen isotopes were sampled and determined in a demonstration area of soil and moisture conservation at the Laocheng Town of Yuanmou County in Chuxiong Prefecture, Yunnan of three land use types: Leucaena Benth artificial forest, Heteropogon contortus grass field, and farmland. The characteristics of stable hydrogen and oxygen isotopes of soil moisture in these different land use types at different soil depths were analyzed to investigate the regularities in the quantitative formation of soil moisture balance. In terms of forest land, we found that the variable coefficient of hydrogen isotopes in the 0-20 cm soil layer was the smallest, but decreased with depth under 20 cm. While in grassland, the variable coefficient in 80-100 cm was the largest, and decreased with depth above 80 cm. As for farmland, the variable coefficient in the top 20 cm was the largest, followed by 40-60 cm, and the medium 20-40 cm was the smallest. The soil moisture hydrogen isotope values of three land use type were different at surface layer, but prone to be consistent in each type. Along the soil depth in forest land, the hydrogen isotope increased first and then decreased, while increased in the end, and the maximum appeared in 80-100 cm. In grassland, the hydrogen isotope increased initially as the forest land but then decreased continuously, so the maximum was found at 20-40 cm. And in grassland, the hydrogen isotope of all depths were higher than which of forest land and farmland. In same land use type, the hydrogen isotope of soil moisture changed significantly at the surface, and the variation of hydrogen isotopes was obviously decreased along the depth. Our findings could provide reference data which would contribute to the assessment of regional groundwater resources in the dry-hot valley of Yuanmou in this study.


Sign in / Sign up

Export Citation Format

Share Document