scholarly journals NEUTRON EMISSION RATE REDUCTION IN PuO$sub 2$ BY OXYGEN EXCHANGE.

1971 ◽  
Author(s):  
C.B. Chadwell ◽  
T.C. Elswick
2021 ◽  
Vol 16 (0) ◽  
pp. 1402039-1402039
Author(s):  
Siriyaporn SANGAROON ◽  
Kunihiro OGAWA ◽  
Mitsutaka ISOBE ◽  
Yutaka FUJIWARA ◽  
Hiroyuki YAMAGUCHI ◽  
...  

1959 ◽  
Vol 37 (5) ◽  
pp. 550-556 ◽  
Author(s):  
K. W. Geiger

Fluorine has only one stable isotope, F19. If neutrons are produced by the F19(α, n)Na22 reaction the neutron output can be calculated from the yield of the resulting radioactive Na22. The growth of Na22 (half-life, 2.58 years) has been measured in a neutron source consisting originally of 1.6 curies Po210 mixed with CaF2 powder. Since Na22 is a positron emitter, discrimination against γ-rays from Po210 and from nuclear reactions could be achieved by detecting the two positron annihilation quanta in coincidence. The Na22 growth has been followed over 20 months and is in agreement with the theoretical growth curve. Comparison with a calibrated Na22 source yielded a neutron emission rate of (10.70 ± 0.25) × 104 sec−1. This resulted in a neutron emission rate of (3.16 ± 0.10) × 106 sec−1 for the Ra-α-Be source of the National Research Council, in good agreement with (3.22 ± 0.05) × 106 sec−1 obtained by a neutron thermalization method.


2019 ◽  
Vol 28 (03) ◽  
pp. 1950013
Author(s):  
Saeed Soheyli ◽  
Morteza Khalil Khalili ◽  
Ghazaaleh Ashrafi

Whereas there is a slight information on the pre-saddle neutron emission rate and neutron multiplicity, as well as it is impossible to separate the pre-saddle and saddle to scission neutron contributions experimentally, the theoretical studies of pre-saddle neutron emission rate and neutron multiplicity are of great importance. In the present work, the calculations of pre-saddle neutron multiplicity are performed using the analysis of fission fragment angular anisotropy data for [Formula: see text] and [Formula: see text] reaction systems. The obtained results show that the pre-saddle neutron multiplicity decreases by increasing the initial excitation energy and it has found to be characterized by a nonlinear behavior. Through the analysis of pre-saddle neutron multiplicity and pre-saddle transition time by means of the neutron clock method, the pre-saddle neutron emission rate is calculated for the first time. The findings of this study show that the pre-scission neutron emission rate is lower than the pre-saddle neutron emission rate.


2017 ◽  
Vol 12 (0) ◽  
pp. 1202036-1202036 ◽  
Author(s):  
Kunihiro OGAWA ◽  
Mitsutaka ISOBE ◽  
Takeo NISHITANI ◽  
Hiroki KAWASE ◽  
Neng PU ◽  
...  

2018 ◽  
Vol 67 (24) ◽  
pp. 242901
Author(s):  
Li Yong-Ming ◽  
Wang Liang ◽  
Chen Xiang-Lin ◽  
Ruan Nian-Shou ◽  
Zhao De-Shan

2021 ◽  
Vol 247 ◽  
pp. 12008
Author(s):  
Augusto Hernandez-Solis ◽  
Klemen Ambrožič ◽  
Dušan Čalič ◽  
Luca Fiorito ◽  
Bor Kos ◽  
...  

In this paper, two main exercises have been carried out to describe the effect that varying an albedo boundary condition has in the computation of observables such as decay heat, neutron emission rate and nuclide inventory from a PWR fuel assembly (or a configuration of assemblies) during a depletion scenario. The SERPENT2 code was then employed to emphasize the importance of modeling a proper boundary condition for such purposes. Moreover, the effect of taking into account more than a single fuel-pin region for depletion studies while varying the type of boundary condition, was also accounted for. The first exercise has the main objective of comparing in a single fuel assembly the albedo variations ranging from 1.1 up to full vacuum conditions. By comparing to the reference assembly (considered to be the case of full reflective conditions), relative differences up to +17% were observed in decay heat and up to almost -30% in neutron emissions. Also, a clear dependence on the albedo was detected if more than one depletable zone was considered while computing the integral value of observables of interest. Regarding the second exercise, where a 3 × 3 configuration of fuel assemblies is being now considered with a reflector section in the middle, a negligible effect on the observables was observed for the single fuel pin zone case; instead, an effect in the 244Cm computation when analyzing two fuel pin-zones produced a change in the neutron emission rate during cooling time up to 2.5% (while comparing it to the reference single assembly case).


2018 ◽  
Vol 60 (9) ◽  
pp. 095010 ◽  
Author(s):  
Kunihiro Ogawa ◽  
Mitsutaka Isobe ◽  
Takeo Nishitani ◽  
Ryosuke Seki ◽  
Hideo Nuga ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document