scholarly journals Study of energetic electrons in the outer radiation-belt regions using data obtained by the LLL spectrometer on OGO-5 in 1968

1979 ◽  
Author(s):  
H.I. Jr. West ◽  
R.M. Buck ◽  
G. Davidson
1999 ◽  
Vol 30 (5) ◽  
pp. 625-632 ◽  
Author(s):  
A.D. Johnstone ◽  
D.J. Rodgers ◽  
G.H. Jones

2019 ◽  
Vol 37 (4) ◽  
pp. 719-732
Author(s):  
Alexei V. Dmitriev

Abstract. Within the last two solar cycles (from 2001 to 2018), the location of the outer radiation belt (ORB) was determined using NOAA/Polar-orbiting Operational Environmental Satellite (POES) observations of energetic electrons with energies above 30 keV. It was found that the ORB was shifted a little (∼1∘) in the European and North American sectors, while in the Siberian sector the ORB was displaced equatorward by more than 3∘. The displacements corresponded qualitatively to the change in the geomagnetic field predicted by the IGRF-12 model. However, in the Siberian sector, the model has a tendency to underestimate the equatorward shift of the ORB. The shift became prominent after 2012, which might have been related to a geomagnetic “jerk” that occurred in 2012–2013. The displacement of the ORB to lower latitudes in the Siberian sector can contribute to an increase in the occurrence rate of midlatitude auroras observed in the Eastern Hemisphere.


2015 ◽  
Vol 42 (4) ◽  
pp. 987-995 ◽  
Author(s):  
Q. Ma ◽  
W. Li ◽  
R. M. Thorne ◽  
B. Ni ◽  
C. A. Kletzing ◽  
...  

2020 ◽  
Author(s):  
Samuel Walton ◽  
Colin Forsyth ◽  
Iain Jonathan Rae ◽  
Clare Watt ◽  
Richard Horne ◽  
...  

<p>The electron population inside Earth’s outer radiation belt is highly variable and typically linked to geomagnetic activity such as storms and substorms. These variations can differ with radial distance, such that the fluxes at the outer boundary are different from those in the heart of the belt. Using data from the Proton Electron Telescope (PET) on board NASA’s Solar Anomalous Magnetospheric Particle Explorer (SAMPEX), we have examined the correlation between electron fluxes at all L's within the radiation belts for a range of geomagnetic conditions, as well as longer-term averages. Our analysis shows that fluxes at L≈2-4 and L≈4-10 are well correlated within these regions, with coefficients in excess of 80%, however, the correlation between these two regions is low. These correlations vary between storm-times and quiet-times. We examine whether, and to what extent this correlation is related to the level of enhancement of the outer radiation belt during geomagnetic storms, and whether the plasmapause plays any role defining the different regions of correlated flux.</p>


2014 ◽  
Vol 119 (3) ◽  
pp. 1693-1708 ◽  
Author(s):  
Yue Chen ◽  
Reiner H. W. Friedel ◽  
Michael G. Henderson ◽  
Seth G. Claudepierre ◽  
Steven K. Morley ◽  
...  

2016 ◽  
Vol 58 (7) ◽  
pp. 1219-1228 ◽  
Author(s):  
Shanshan Chang ◽  
Zhengping Zhu ◽  
Binbin Ni ◽  
Xing Cao ◽  
Weihua Luo

Sign in / Sign up

Export Citation Format

Share Document