Role of acyl carrier protein isoforms in plant lipid metabolism: Progress report

1989 ◽  
Author(s):  
J. B. Ohlrogge
Planta ◽  
1998 ◽  
Vol 205 (2) ◽  
pp. 263-268 ◽  
Author(s):  
Burkhardt Siegfried Schütt ◽  
Monika Brummel ◽  
Ricardo Schuch ◽  
Friedrich Spener

1975 ◽  
Vol 146 (1) ◽  
pp. 223-229 ◽  
Author(s):  
J W Harding ◽  
E A Pyeritz ◽  
E S Copeland ◽  
H B White

1. The metabolic role of hepatic NAD-linked glycerol 3-phosphate dehydrogenase (EC 1.1.1.8) was investigated vis-a-vis glyceride synthesis, glyceride degradation and the maintainence of the NAD redox state. 2. Five-week-old chickens were placed on five dietary regimes: a control group, a group on an increased-carbohydrate-lowered-fat diet, a group on a high-fat-lowered-carbohydrate diet, a starved group and a starved-refed group. In each group the specific activity (mumol/min per g wet wt. of tissue) of hepatic glycerol 3-phosphate dehydrogenase was compared with the activities of the β-oxoacyl-(acyl-carrier protein) reductase component of fatty acid synthetase, glycerol kinase (EC 2.7.1.30) and lactate dehydrogenase (EC 1.1.1.27). 3. During starvation, the activities of glycerol 3-phosphate dehydrogenase, glycerol kinase and lactate dehydrogenase rose significantly. After re-feeding these activities returned to near normal. All three activities rose slightly on the high-fat diet. Lactate dehydrogenase activity rose slightly, whereas those of the other two enzymes fell slightly on the increased-carbohydrate-lowered-fat diet. 4. The activity of the β-oxoacyl-(acyl-carrier protein) reductase component of fatty acid synthetase, a lipid-synthesizing enzyme, contrasted strikingly with the other three enzyme activities. Its activity was slightly elevated on the increased-carbohydrate diet and significantly diminished on the high-fat diet and during starvation. 5. The changes in activity of the chicken liver isoenzyme of glycerol 3-phosphate dehydrogenase in response to dietary stresses suggest that the enzyme has an important metabolic role other than or in addition to glyceride biosynthesis.


Planta ◽  
2010 ◽  
Vol 231 (6) ◽  
pp. 1277-1289 ◽  
Author(s):  
Damián González-Mellado ◽  
Penny von Wettstein-Knowles ◽  
Rafael Garcés ◽  
Enrique Martínez-Force

1986 ◽  
Vol 82 (2) ◽  
pp. 448-453 ◽  
Author(s):  
Daniel J. Guerra ◽  
John B. Ohlrogge ◽  
Margrit Frentzen

1998 ◽  
Vol 180 (6) ◽  
pp. 1425-1430 ◽  
Author(s):  
Richard J. Heath ◽  
Charles O. Rock

ABSTRACT Sequence analysis of membrane-bound glycerolipid acyltransferases revealed that proteins from the bacterial, plant, and animal kingdoms share a highly conserved domain containing invariant histidine and aspartic acid residues separated by four less conserved residues in an HX4D configuration. We investigated the role of the invariant histidine residue in acyltransferase catalysis by site-directed mutagenesis of two representative members of this family, the sn-glycerol-3-phosphate acyltransferase (PlsB) and the bifunctional 2-acyl-glycerophosphoethanolamine acyltransferase/acyl-acyl carrier protein synthetase (Aas) ofEscherichia coli. Both the PlsB[H306A] and Aas[H36A] mutants lacked acyltransferase activity. However, the Aas[H36A] mutant retained significant acyl-acyl carrier protein synthetase activity, illustrating that the lack of acyltransferase activity was specifically associated with the H36A substitution. The invariant aspartic acid residue in the HX4D pattern was also important. The substitution of aspartic acid 311 with glutamic acid in PlsB resulted in an enzyme with significantly reduced catalytic activity. Substitution of an alanine at this position eliminated acyltransferase activity; however, the PlsB[D311A] mutant protein did not assemble into the membrane, indicating that aspartic acid 311 is also important for the proper folding and membrane insertion of the acyltransferases. These data are consistent with a mechanism for glycerolipid acyltransferase catalysis where the invariant histidine functions as a general base to deprotonate the hydroxyl moiety of the acyl acceptor.


2020 ◽  
Vol 183 (2) ◽  
pp. 547-557
Author(s):  
Xinyu Fu ◽  
Xin Guan ◽  
Rachel Garlock ◽  
Basil J. Nikolau

Sign in / Sign up

Export Citation Format

Share Document