acyl acceptor
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 11)

H-INDEX

22
(FIVE YEARS 2)

Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1486
Author(s):  
Ana Carolina Vieira ◽  
Ana Bárbara Moulin Cansian ◽  
José Renato Guimarães ◽  
Angelica Marquettotti Salcedo Vieira ◽  
Roberto Fernandez-Lafuente ◽  
...  

Liquid Eversa was evaluated in hydrolysis of acylglycerols from soybean oil deodorizer distillate (SODD), as well as simultaneous esterification/transesterification of SODD with low-to-high free fatty acids (FFAs) content using ethanol as acyl acceptor. Hydrolysis of SODD at mild temperature (37 °C) and without pH control (water:SODD mass ratio of 4:1) increased its FFAs content from 17.2 wt.% to 72.5 wt.% after 48 h reaction. A cold saponification of SODD allowed a saponification phase (SODD-SP) to be recovered with 93 wt.% saponification index and 2.25 wt.% FFAs content, which was used to find the experimental conditions for simultaneous esterification/transesterification reactions by experimental design. Temperature of 35 °C, enzyme concentration of 8.36 wt.%, and molar ratio of 3.64:1 (ethanol:SODD-SP) were found as the best conditions for fatty acid ethyl esters (FAEEs) production from SODD-SP (86.56 wt.% ester yield after 23 h reaction). Under the same reaction conditions, crude SODD (17.2 wt.% FFAs) and hydrolyzed SODD (72.5 wt.% FFAs) yielded products containing around 80 wt.% FAEEs. Caustic treatment could increase the ester content to around 90 wt.% and reduce the FFAs content to less than 1 wt.%. Our results show the good performance of liquid Eversa in aqueous (hydrolysis reactions) and organic (esterification/transesterification reactions) media.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rao Fu ◽  
Pingyu Zhang ◽  
Ge Jin ◽  
Lianglei Wang ◽  
Shiqian Qi ◽  
...  

AbstractPurple coneflower (Echinacea purpurea (L.) Moench) is a popular native North American herbal plant. Its major bioactive compound, chicoric acid, is reported to have various potential physiological functions, but little is known about its biosynthesis. Here, taking an activity-guided approach, we identify two cytosolic BAHD acyltransferases that form two intermediates, caftaric acid and chlorogenic acid. Surprisingly, a unique serine carboxypeptidase-like acyltransferase uses chlorogenic acid as its acyl donor and caftaric acid as its acyl acceptor to produce chicoric acid in vacuoles, which has evolved its acyl donor specificity from the better-known 1-O-β-D-glucose esters typical for this specific type of acyltransferase to chlorogenic acid. This unusual pathway seems unique to Echinacea species suggesting convergent evolution of chicoric acid biosynthesis. Using these identified acyltransferases, we have reconstituted chicoric acid biosynthesis in tobacco. Our results emphasize the flexibility of acyltransferases and their roles in the evolution of specialized metabolism in plants.


2021 ◽  
Vol 11 ◽  
Author(s):  
Chengyuan Wang ◽  
Jianxu Li ◽  
Miaolian Ma ◽  
Zhaozhu Lin ◽  
Wenli Hu ◽  
...  

Phenolamides represent one of the largest classes of plant-specialized secondary metabolites and function in diverse physiological processes, including defense responses and development. The biosynthesis of phenolamides requires the BAHD-family acyltransferases, which transfer acyl-groups from different acyl-donors specifically to amines, the acyl-group acceptors. However, the mechanisms of substrate specificity and multisite-acylation of the BAHD-family acyltransferases remain poorly understood. In this study, we provide a structural and biochemical analysis of AtSHT and AtSDT, two representative BAHD-family members that catalyze the multisite acylation of spermidine but show different product profiles. By determining the structures of AtSHT and AtSDT and using structure-based mutagenesis, we identified the residues important for substrate recognition in AtSHT and AtSDT and hypothesized that the acyl acceptor spermidine might adopt a free-rotating conformation in AtSHT, which can undergo mono-, di-, or tri-acylation; while the spermidine molecule in AtSDT might adopt a linear conformation, which only allows mono- or di-acylation to take place. In addition, through sequence similarity network (SSN) and structural modeling analysis, we successfully predicted and verified the functions of two uncharacterized Arabidopsis BAHD acyltransferases, OAO95042.1 and NP_190301.2, which use putrescine as the main acyl-acceptor. Our work provides not only an excellent starting point for understanding multisite acylation in BAHD-family enzymes, but also a feasible methodology for predicting possible acyl acceptor specificity of uncharacterized BAHD-family acyltransferases.


2020 ◽  
Author(s):  
Lucie Kriegshauser ◽  
Samuel Knosp ◽  
Etienne Grienenberger ◽  
Kanade Tatsumi ◽  
Desirée D. Gütle ◽  
...  

ABSTRACTThe plant phenylpropanoid pathway generates a major class of specialized metabolites and precursors of essential extracellular polymers that initially appeared upon plant terrestrialization. Despite its evolutionary significance, little is known about the complexity and function of this major metabolic pathway in extant bryophytes, the ancestors of which were the first land plants. Here, we report that the HYDROXYCINNAMOYL-CoA:SHIKIMATE HYDROXYCINNAMOYL TRANSFERASE (HCT) gene, which plays a critical function in the phenylpropanoid pathway during seed plant development, is functionally conserved in Physcomitrium patens (Physcomitrella), in the moss lineage of bryophytes. Phylogenetic analysis indicates that bona fide HCT function emerged in the progenitor of embryophytes. In vitro enzyme assays, moss phenolic pathway reconstitution in yeast and in planta gene inactivation coupled to targeted metabolic profiling, collectively indicate that P. patens HCT (PpHCT), similar to tracheophyte HCT orthologs, uses shikimate as a native acyl acceptor to produce a p-coumaroyl-5-O-shikimate intermediate. Phenotypic and metabolic analyses of loss-of-function mutants show that PpHCT is necessary for the production of caffeate derivatives, including previously reported caffeoyl-threonate esters, and for the formation of an intact cuticle. Deep conservation of HCT function in embryophytes is further suggested by the ability of HCT genes from P. patens and the liverwort Marchantia polymorpha to complement an Arabidopsis thaliana CRISPR/Cas9 hct mutant, and by the presence of phenolic esters of shikimate in representative species of the three bryophyte lineages.


2020 ◽  
Vol 11 ◽  
Author(s):  
Ida Lager ◽  
Simon Jeppson ◽  
Anna-Lena Gippert ◽  
Ivo Feussner ◽  
Sten Stymne ◽  
...  

Fuel ◽  
2020 ◽  
Vol 259 ◽  
pp. 116258
Author(s):  
Preeti Nain ◽  
Sumit K. Jaiswal ◽  
N. Tejo Prakash ◽  
Ranjana Prakash ◽  
Sanjay Kumar Gupta

2019 ◽  
Author(s):  
Sean E. Pidgeon ◽  
Alexis J. Apostolos ◽  
Marcos M. Pires

ABSTRACTCell walls are barriers found in almost all known bacterial cells. These structures establish a controlled interface between the external environment and vital cellular components. A primary component of cell wall is a highly crosslinked matrix called peptidoglycan (PG). PG crosslinking, carried out by transglycosylases and transpeptidases, is necessary for proper cell wall assembly. Transpeptidases, targets of β-lactam antibiotics, stitch together two neighboring PG stem peptides (acyl-donor and acyl-acceptor strands). We recently described a novel class of cellular PG probes that were processed exclusively as acyl-donor strands. Herein, we have accessed the other half of the transpeptidase reaction by developing probes that are processed exclusively as acyl-acceptor strands. The critical nature of the crossbridge on the PG peptide was demonstrated in live bacterial cells and surprising promiscuity in crossbridge primary sequence was found in various bacterial species. Additionally, acyl-acceptor probes provided insight into how chemical remodeling of the PG crossbridge (e.g., amidation) can modulate crosslinking levels, thus establishing a physiological role of PG structural variations. Together, the acyl-donor and -acceptor probes will provide a versatile platform to interrogate PG crosslinking in physiologically relevant settings.SYNOPSIS TOC


2019 ◽  
Vol 20 (22) ◽  
pp. 5541 ◽  
Author(s):  
Naoki Ube ◽  
Yukinori Yabuta ◽  
Takuji Tohnooka ◽  
Kotomi Ueno ◽  
Shin Taketa ◽  
...  

Phytoalexins are inducible antimicrobial metabolites in plants, and have been indicated to be important for the rejection of microbial infection. HPLC analysis detected the induced accumulation of three compounds 1–3 in barley (Hordeum vulgare) roots infected by Fusarium culmorum, the causal agent of Fusarium root rot. Compounds 1–3 were identified as cinnamic acid amides of 9-hydroxy-8-oxotryptamine, 8-oxotryptamine, and (1H-indol-3-yl)methylamine, respectively, by spectroscopic analysis. Compounds 1 and 2 had been previously reported from wheat, whereas 3 was an undescribed compound. We named 1–3 as triticamides A–C, respectively, because they were isolated from barley and wheat, which belong to the Triticeae tribe. These compounds showed antimicrobial activities, indicating that triticamides function as phytoalexins in barley. The administration of deuterium-labeled N-cinnamoyl tryptamine (CinTry) to barley roots resulted in the effective incorporation of CinTry into 1 and 2, which suggested that they were synthesized through the oxidation of CinTry. Nine putative tryptamine hydroxycinnamoyl transferase (THT)-encoding genes (HvTHT1–HvTHT9) were identified by database search on the basis of homology to known THT gene sequences from rice. Since HvTHT7 and HvTHT8 had the same sequences except one base, we measured their expression levels in total by RT-qPCR. HvTHT7/8 were markedly upregulated in response to infection by F. culmorum. The HvTHT7 and HvTHT8 enzymes preferred cinnamoyl- and feruloyl-CoAs as acyl donors and tryptamine as an acyl acceptor, and (1H-indol-3-yl)methylamine was also accepted as an acyl acceptor. These findings suggested that HvTHT7/8 are responsible for the induced accumulation of triticamides in barley.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Azeem Abdul Aziz Budhwani ◽  
Ayesha Maqbool ◽  
Tanveer Hussain ◽  
Muhammad Noman Syed

Abstract Background It is becoming imperative to develop renewable fuels such as biodiesel which are sustainable and environmentally friendly. Exploiting non-edible oils is more necessary to reduce dependency of edible oils for biodiesel production. The current study investigated biodiesel production from non-edible Salvadora persica seed oil (SPSO) and crude coconut oil (CCO) by Burkholderia cepacia lipase acting as a biocatalyst in a solvent-free system. The biodiesel yield produced from these feedstocks was compared and the effect of ethanol (acyl acceptor) vs. SPSO and CCO in various ratios on biodiesel production was determined. Results The presence of medium-chain fatty acids in majority was confirmed for SPSO and CCO while the average molecular weight was calculated as 749.53 g/mol and 664.57 g/mol, respectively. Thin Layer Chromatography indicated ethyl esters in the produced Salvadora and coconut biodiesel samples. Maximum biodiesel yield (around 70%) was obtained at 1:4 oil-to-ethanol molar ratio from both oils followed by a decline at higher ratios. The gas chromatographic analysis of Salvadora biodiesel at 1:4 molar ratio showed that the yield of individual esters was mostly of medium- and long-chain fatty acids. The analysis of coconut biodiesel at 1:4 molar ratio revealed that it consists mainly of the esters of medium-chain fatty acids. A comparison of estimated properties of biodiesel from both the parent oils with the international standard showed that it meets most of the requirements. Conclusion The study paves the way for a green route for biodiesel production and would promote the use of non-edible vegetable oils over edible ones to produce biodiesel. Further, it is a right step to use lipases in biodiesel production as compared to chemical catalysts. Ethanol, which can also be produced from biomass fermentation, can be used as acyl acceptor to produce biodiesel and this makes the process eco-friendly. Moreover, Burkholderia cepacia lipase is a good choice among lipases to get high biodiesel yields successfully from SPSO and CCO at low oil-to-ethanol molar ratios.


2019 ◽  
Vol 137 ◽  
pp. 270-275 ◽  
Author(s):  
Shangde Sun ◽  
Jingjing Guo ◽  
Xu Duan
Keyword(s):  
Seed Oil ◽  

Sign in / Sign up

Export Citation Format

Share Document