The role of acyl carrier protein isoforms from Cuphea lanceolata seeds in the de-novo biosynthesis of medium-chain fatty acids

Planta ◽  
1998 ◽  
Vol 205 (2) ◽  
pp. 263-268 ◽  
Author(s):  
Burkhardt Siegfried Schütt ◽  
Monika Brummel ◽  
Ricardo Schuch ◽  
Friedrich Spener
2019 ◽  
Vol 7 ◽  
pp. 100184
Author(s):  
Shinji Sugihara ◽  
Tatsurou Ozaki ◽  
Takuto Tojo ◽  
Hiroko Endo ◽  
Takeshi Saito ◽  
...  

1981 ◽  
Author(s):  
M L McKean ◽  
J B Smith ◽  
M J Silver

The fatty acid composition of cell membrane phospholipids does not remain constant after de novo biosynthesis, but undergoes continual remodelling. One of the major routes for remodelling probably includes the deacylation-reacylation steps of the Lands Pathway. This has been shown to be important for the incorporation of long chain, polyunsaturated fatty acids into phospholipids by liver and brain. An understanding of the mechanisms involved in these processes in platelets is especially important in light of the large stores of arachidonic acid (AA) in platelet phospholipids and the role of AA in hemostasis and thrombosis. Previous results from this laboratory have shown that the turnover of radioactive AA, 8,11,14-eicosatrienoic and 5,8,11,14,17-eicosapentaenoic acids in the phospholipids of resting platelets is more rapid than the turnover of radioactive C16 and C18 saturated and unsaturated fatty acids. However, little is known about how fatty acids, especially AA and its homologues, are incorporated into platelet phospholipids during de novo biosynthesis or how they are exchanged during remodelling.At least three enzymes are involved in the deacylation- reacylation of phospholipids: phospholipase A2; acyl CoA synthetase; and acyl CoA transferase. We have studied acyl CoA transferase and have found considerable activity in human platelet membranes. Experiments are in progress to determine the substrate specificity and other properties of this enzyme.


2019 ◽  
Author(s):  
Matthew J. Scarborough ◽  
Joshua J. Hamilton ◽  
Elizabeth A. Erb ◽  
Timothy J. Donohue ◽  
Daniel R. Noguera

ABSTRACTMulti-species microbial communities determine the fate of materials in the environment and can be harnessed to produce beneficial products from renewable resources. In a recent example, fermentations by microbial communities have produced medium-chain fatty acids (MCFAs). Tools to predict, assess, and improve the performance of these communities, however, are limited. To provide such tools, we constructed two metabolic models of MCFA-producing microbial communities based on available genomic, transcriptomic and metabolomic data. The first model is a unicellular model (iFermCell215), while the second model (iFermGuilds789) separates fermentation activities into functional guilds. Ethanol and lactate are fermentation products known to serve as substrates for MCFA production, while acetate is another common co-metabolite during MCFA production. Simulations with iFermCell215 predict that low molar ratios of acetate-to-ethanol favor MCFA production, whereas the products of lactate and acetate co-utilization are less dependent on the acetate-to-lactate ratio. In simulations of an MCFA-producing community fed a complex organic mixture derived from lignocellulose, iFermGuilds789 predicted that lactate was an extracellular co-metabolite that served as a substrate for butyrate (C4) production. Extracellular hexanoic (C6) and octanoic acids (C8) were predicted by iFermGuilds789 to be from community members that directly metabolize sugars. Modeling results provide several hypotheses that can improve our understanding of microbial roles in a MCFA-producing microbiome and inform strategies to increase MCFA production. Further, these models represent novel tools for exploring the role of mixed microbial communities in carbon recycling in the environment, as well as on beneficial reuse of organic residues.IMPORTANCEMicrobiomes are vital to human health, agriculture, and protecting the environment. Predicting behavior of self-assembled or synthetic microbiomes, however, remains a challenge. In this work, we used unicellular and guild-based metabolic models to investigate production of medium-chain fatty acids by a mixed microbial community that is fed multiple organic substrates. Modeling results provided insights into metabolic pathways of three medium-chain fatty acid-producing guilds and identified potential strategies to increase production of medium-chain fatty acids. This work demonstrates the role of metabolic models in augmenting multi-omic studies to gain greater insights into microbiome behavior.


2018 ◽  
Vol 66 (5) ◽  
pp. 1242-1250 ◽  
Author(s):  
Tian-Tian Zhu ◽  
Yan Zhang ◽  
Xing-An Luo ◽  
Shen-Zhi Wang ◽  
Ming-Qiang Jia ◽  
...  

2014 ◽  
Vol 41 (1) ◽  
pp. 80 ◽  
Author(s):  
Yijun Yuan ◽  
Yinhua Chen ◽  
Shan Yan ◽  
Yuanxue Liang ◽  
Yusheng Zheng ◽  
...  

Coconut (Cocos nucifera L.) contains large amounts of medium chain fatty acids, which mostly recognise acyl-acyl carrier protein (ACP) thioesterases that hydrolyse acyl-ACP into free fatty acids to terminate acyl chain elongation during fatty acid biosynthesis. A full-length cDNA of an acyl-ACP thioesterase, designated CocoFatB1, was isolated from cDNA libraries prepared from coconut endosperm during fruit development. The gene contained an open reading frame of 1254 bp, encoding a 417-amino acid protein. The amino acid sequence of the CocoFatB1 protein showed 100% and 95% sequence similarity to CnFatB1 and oil palm (Elaeis guineensis Jacq.) acyl-ACP thioesterases, respectively. Real-time fluorescent quantitative PCR analysis indicated that the CocoFatB1 transcript was most abundant in the endosperm from 8-month-old coconuts; the leaves and endosperm from 15-month-old coconuts had ~80% and ~10% of this level. The CocoFatB1 coding region was overexpressed in tobacco (Nicotiana tabacum L.) under the control of the seed-specific napin promoter following Agrobacterium tumefaciens-mediated transformation. CocoFatB1 transcript expression varied 20-fold between different transgenic plants, with 21 plants exhibiting detectable levels of CocoFatB1 expression. Analysis of the fatty acid composition of transgenic tobacco seeds showed that the levels of myristic acid (14 : 0), palmitic acid (16 : 0) and stearic acid (18 : 0) were increased by 25%, 34% and 17%, respectively, compared with untransformed plants. These results indicated that CocoFatB1 acts specifically on 14 : 0-ACP, 16 : 0-ACP and 18 : 0-ACP, and can increase medium chain saturated fatty acids. The gene may valuable for engineering fatty acid metabolism in crop improvement programmes.


1984 ◽  
Vol 220 (2) ◽  
pp. 513-519 ◽  
Author(s):  
H O Hansen ◽  
I Grunnet ◽  
J Knudsen

Goat mammary-gland microsomal fraction by itself induces synthesis of medium-chain-length fatty acids by goat mammary fatty acid synthetase and incorporates short- and medium-chain fatty acids into triacylglycerol. Addition of ATP in the absence or presence of Mg2+ totally inhibits triacylglycerol synthesis from short- and medium-chain fatty acids, and severely inhibits synthesis de novo of medium-chain fatty acids. The inhibition by ATP of fatty acid synthesis and triacylglycerol synthesis de novo can be relieved by glycerol 3-phosphate. The effect of ATP could not be mimicked by the non-hydrolysable ATP analogue, adenosine 5′-[beta, gamma-methylene]triphosphate and could not be shown to be caused by inhibition of the diacylglycerol acyltransferase by a phosphorylation reaction. Possible explanations for the mechanism of the inhibition by ATP are discussed, and a hypothetical model for its action is outlined.


Sign in / Sign up

Export Citation Format

Share Document