scholarly journals Studies on mathematical models for characterizing plume and drift behavior from cooling towers. Volume 2. Mathematical model for single-source (single-tower) cooling tower plume dispersion

1981 ◽  
Author(s):  
R. A. Carhart ◽  
A. J. Policastro ◽  
S. Ziemer ◽  
K. Haake ◽  
W. Dunn
Author(s):  
B E A Fisher

An assessment of the effects of visible cooling tower plumes on the local environment can be a necessary part of any proposal for a new large industrial process. Predictions of the dispersion of plumes from cooling towers are based on methods developed for chimney emissions. However, the kinds of criteria used to judge the acceptability of cooling tower plumes are different from those used for stack plumes. The frequency of long elevated plumes and the frequency of ground fogging are the two main issues. It is shown that events associated with significant plume visibility are dependent both on the operating characteristics of the tower and on the occurrence of certain meteorological conditions. The dependence on atmospheric conditions is shown to be fairly complex and simple performance criteria based on the exit conditions from the tower are not sufficient for assessments.


2020 ◽  
Vol 68 (2) ◽  
pp. 137-145
Author(s):  
Yang Zhouo ◽  
Ming Gao ◽  
Suoying He ◽  
Yuetao Shi ◽  
Fengzhong Sun

Based on the basic theory of water droplets impact noise, the generation mechanism and calculation model of the water-splashing noise for natural draft wet cooling towers were established in this study, and then by means of the custom software, the water-splashing noise was studied under different water droplet diameters and water-spraying densities as well as partition water distribution patterns conditions. Comparedwith the water-splashing noise of the field test, the average difference of the theoretical and the measured value is 0.82 dB, which validates the accuracy of the established theoretical model. The results based on theoretical model showed that, when the water droplet diameters are smaller in cooling tower, the attenuation of total sound pressure level of the water-splashing noise is greater. From 0 m to 8 m away from the cooling tower, the sound pressure level of the watersplashing noise of 3 mm and 6 mm water droplets decreases by 8.20 dB and 4.36 dB, respectively. Additionally, when the water-spraying density becomes twice of the designed value, the sound pressure level of water-splashing noise all increases by 3.01 dB for the cooling towers of 300 MW, 600 MW and 1000 MW units. Finally, under the partition water distribution patterns, the change of the sound pressure level is small. For the R s/2 and Rs/3 partition radius (Rs is the radius of water-spraying area), when the water-spraying density ratio between the outer and inner zone increases from 1 to 3, the sound pressure level of water-splashing noise increases by 0.7 dB and 0.3 dB, respectively.


2018 ◽  
Vol 15 (1) ◽  
pp. 39-55
Author(s):  
V. B. Rudakov ◽  
V. M. Makarov ◽  
M. I. Makarov

The article considers the problem of determining the rational plans of the input sampling reliability and technical parameters of components of space technology, the totality of which is supplied to the Assembly plants for the manufacture of complex products of space technology. Problem statement and mathematical model based on the minimization of the economic costs of control and losses related to the risks of taking wrong decisions, are given in the article. The properties of the mathematical models are investigated, the algorithm for its optimization is developed. The result is an optimal plan for the sampling of sets of components, which includes: an optimal product mix subject to mandatory control of the aggregate and optimum risks of first and second kind, when acceptance number of statistical plan is zero. The latter circumstance is due to the high requirements of reliability and technical parameters of products of space technology.


Author(s):  
Shuo Li ◽  
M. R. Flynn

AbstractVisible plumes above wet cooling towers are of great concern due to the associated aesthetic and environmental impacts. The parallel path wet/dry cooling tower is one of the most commonly used approaches for plume abatement, however, the associated capital cost is usually high due to the addition of the dry coils. Recently, passive technologies, which make use of free solar energy or the latent heat of the hot, moist air rising through the cooling tower fill, have been proposed to minimize or abate the visible plume and/or conserve water. In this review, we contrast established versus novel technologies and give a perspective on the relative merits and demerits of each. Of course, no assessment of the severity of a visible plume can be made without first understanding its atmospheric trajectory. To this end, numerous attempts, being either theoretical or numerical or experimental, have been proposed to predict plume behavior in atmospheres that are either uniform versus density-stratified or still versus windy (whether highly-turbulent or not). Problems of particular interests are plume rise/deflection, condensation and drift deposition, the latter consideration being a concern of public health due to the possible transport and spread of Legionella bacteria.


Sign in / Sign up

Export Citation Format

Share Document