scholarly journals LARGE-SCALE PRODUCTION OF HYDROGEN BY NUCLEAR ENERGY FOR THE HYDROGEN ECONOMY

2003 ◽  
Author(s):  
KR SCHULTZ ◽  
LC BROWN ◽  
GE BESENBRUCH ◽  
CJ HAMILTON
Author(s):  
Di Li ◽  
Yingying Xing ◽  
Changjian Zhou ◽  
Yikai Lu ◽  
Shengjie Xu ◽  
...  

The high reaction energy barrier of the oxygen evolution reaction (OER) extremely reduces the efficiency of water splitting, which is not conducive to large-scale production of hydrogen. Due to the...


2020 ◽  
Vol 11 ◽  
pp. 432-442 ◽  
Author(s):  
Munaiah Yeddala ◽  
Pallavi Thakur ◽  
Anugraha A ◽  
Tharangattu N Narayanan

On-site peroxide generation via electrochemical reduction is gaining tremendous attention due to its importance in many fields, including water treatment technologies. Oxidized graphitic carbon-based materials have been recently proposed as an alternative to metal-based catalysts in the electrochemical oxygen reduction reaction (ORR), and in this work we unravel the role of C=O groups in graphene towards sustainable peroxide formation. We demonstrate a versatile single-step electrochemical exfoliation of graphite to graphene with a controllable degree of oxygen functionalities and thickness, leading to the formation of large quantities of functionalized graphene with tunable rate parameters, such as the rate constant and exchange current density. Higher oxygen-containing exfoliated graphene is known to undergo a two-electron reduction path in ORR having an efficiency of about 80 ± 2% even at high overpotential. Bulk production of H2O2 via electrolysis was also demonstrated at low potential (0.358 mV vs RHE), yielding ≈34 mg/L peroxide with highly functionalized (≈23 atom %) graphene and ≈16 g/L with low functionalized (≈13 atom %) graphene, which is on par with the peroxide production using state-of-the-art precious-metal-based catalysts. Hence this method opens a new scheme for the single-step large-scale production of functionalized carbon-based catalysts (yield ≈45% by weight) that have varying functionalities and can deliver peroxide via the electrochemical ORR process.


2012 ◽  
Vol 260-261 ◽  
pp. 28-33
Author(s):  
Jun Zhang ◽  
Lu Cheng Ji ◽  
Bo Jin

Hydrogen energy has been considered as a clean alternative energy source substituting fossil fuels. Many countries consider it as the ultimate solution to the energy and environmental problems, even draw up the blueprint of “hydrogen economy” and heavily invest for research and development. However, after decades of research, the hydrogen energy technologies are still being prospective and explored, and haven’t been put into large scale production by now. This article begins with expatiation on the essence of hydrogen energy, makes analysis of various big challenges for hydrogen energy technologies, and reaches the conclusion that we should hold the rational and cautious attitude towards hydrogen energy source because the transition to hydrogen economy of unclear prospect must pay a very high cost, which is unbearable for the social and economic development status of developing countries.


Author(s):  
Xin-Yu Zhang ◽  
Fengting Li ◽  
Ruo-Yao Fan ◽  
Jie Zhao ◽  
Bin Dong ◽  
...  

Developing of high-activity electrocatalysts that can operate stably at high current density is important but still challenging for large-scale production of hydrogen. Herein, we report a simple method for constructing...


Sign in / Sign up

Export Citation Format

Share Document