scholarly journals Predictions of flow through an isothermal serpentine passage with linear eddy-viscosity Reynolds Averaged Navier Stokes models.

2005 ◽  
Author(s):  
Gregory Michael Laskowski
Author(s):  
Chen Fu ◽  
C Patrick Bounds ◽  
Christian Selent ◽  
Mesbah Uddin

The characterization of a racecar’s aerodynamic behavior at various yaw and pitch configurations has always been an integral part of its on-track performance evaluation in terms of lap time predictions. Although computational fluid dynamics has emerged as the ubiquitous tool in motorsports industry, a clarity is still lacking about the prediction veracity dependence on the choice of turbulence models, which is central to the prediction variability and unreliability for the Reynolds Averaged Navier–Stokes simulations, which is by far the most widely used computational fluid dynamics methodology in this industry. Subsequently, this paper presents a comprehensive assessment of three commonly used eddy viscosity turbulence models, namely, the realizable [Formula: see text] (RKE), Abe–Kondoh–Nagano [Formula: see text], and shear stress transport [Formula: see text], in predicting the aerodynamic characteristics of a full-scale NASCAR Monster Energy Cup racecar under various yaw and pitch configurations, which was never been explored before. The simulations are conducted using the steady Reynolds Averaged Navier–Stokes approach with unstructured trimmer cells. The tested yaw and pitch configurations were chosen in consultation with the race teams such that they reflect true representations of the racecar orientations during cornering, braking, and accelerating scenarios. The study reiterated that the prediction discrepancies between the turbulence models are mainly due to the differences in the predictions of flow recirculation and separation, caused by the individual model’s effectiveness in capturing the evolution of adverse pressure gradient flows, and predicting the onset of separation and subsequent reattachment (if there be any). This paper showed that the prediction discrepancies are linked to the computation of the turbulent eddy viscosity in the separated flow region, and using flow-visualizations identified the areas on the car body which are critical to this analysis. In terms of racecar aerodynamic performance parameter predictions, it can be reasonably argued that, excluding the prediction of the %Front prediction, shear stress transport is the best choice between the three tested models for stock-car type racecar Reynolds Averaged Navier–Stokes computational fluid dynamics simulations as it is the only model that predicted directionally correct changes of all aerodynamic parameters as the racecar is either yawed from the 0° to 3° or pitched from a high splitter-ground clearance to a low one. Furthermore, the magnitude of the shear stress transport predicted delta force coefficients also agreed reasonably well with test results.


Author(s):  
A. Ridluan ◽  
A. Tokuhiro

Time-dependent and time-independent CFD simulations of the flow through a staggered tube bundle were performed. This flow configuration partially simulates the anticipated flow in the lower plenum of a Very High Temperature Reactor (VHTR) design. To design a nuclear reactor with confidence, one needs strict benchmarking as part of a validation and verification exercise for any and all commercial CFD codes. Thus CFD simulations (FLUENT) of isothermal (at present), periodic flow through a tube bundle using both Steady Reynolds Averaged Navier-Stokes (SRANS) and Unsteady Reynolds Averaged Navier-Stokes (URANS) equations were investigated. Selected turbulence models for a single tube diameter and inlet velocity based Re-number, Re ∼ 1.8 × 104, were investigated. The first-order turbulence models were: a standard k-ε turbulence model, a Renormalized Group (RNG) k-ε model, and lastly, a Shear Stress Transport (SST) k-ε model; the second-order model was a Reynolds Stress Model (RSM). Comparison of CFD simulations against experimental results of Simonin and Barcouda was undertaken at five stations (x, y) locations. Under the SRANS, we found the ability of the models to predict the turbulence stresses (u′u′, v′v′, u′v′) generally marginal to poor. However, upon adapting a concept from Large Eddy Simulation (LES), our URANS simulation with RSM revealed a spatiotemporal, oscillating flow structures in the wake. In contrast, it appears that the URANS with (even a) RNG k-ε model is unable to simulate this flow phenomena. In fact, the data suggests that the RNG k-ε model is too spatiotemporally dissipative. Some aspects of the SRANS versus URANS and using the aforementioned turbulence models will be presented.


2016 ◽  
Vol 18 (4) ◽  
pp. 333-350 ◽  
Author(s):  
Phoevos Koukouvinis ◽  
Homa Naseri ◽  
Manolis Gavaises

The aim of this article is to assess the impact of turbulence and cavitation models on the prediction of diesel injector nozzle flow. Two nozzles are examined, an enlarged one, operating at incipient cavitation, and an industrial injector tip, operating at developed cavitation. The turbulence model employed includes the re-normalization group k–ε, realizable k–ε and k–ω shear stress transport Reynolds-averaged Navier–Stokes models; linear pressure–strain Reynolds stress model and the wall adapting local eddy viscosity large eddy simulation model. The results indicate that all Reynolds-averaged Navier–Stokes and the Reynolds stress turbulence models have failed to predict cavitation inception due to their limitation to resolve adequately the low pressure existing inside vortex cores, which is responsible for cavitation development in this particular flow configuration. Moreover, Reynolds-averaged Navier–Stokes models failed to predict unsteady cavitation phenomena in the industrial injector. However, the wall adapting local eddy viscosity large eddy simulation model was able to predict incipient and developed cavitation, while also capturing the shear layer instability, vortex shedding and cavitating vortex formation. Furthermore, the performance of two cavitation methodologies is discussed within the large eddy simulation framework. In particular, a barotropic model and a mixture model based on the asymptotic Rayleigh–Plesset equation of bubble dynamics have been tested. The results indicate that although the solved equations and phase change formulation are different in these models, the predicted cavitation and flow field were very similar at incipient cavitation conditions. At developed cavitation conditions, standard cavitation models may predict unrealistically high liquid tension, so modifications may be essential. It is also concluded that accurate turbulence representation is crucial for cavitation in nozzle flows.


SeMA Journal ◽  
2012 ◽  
Vol 60 (1) ◽  
pp. 51-74
Author(s):  
Christine Bernardi ◽  
Tomás Chacón Rebollo ◽  
Macarena Gómez Mármol

Sign in / Sign up

Export Citation Format

Share Document