scholarly journals Combining Multicomponent Seismic Attributes, New Rock Physics Models, and In Situ Data to Estimate Gas-Hydrate Concentrations in Deep-Water, Near-Seafloor Strata of the Gulf of Mexico

2009 ◽  
Author(s):  
◽  
2016 ◽  
Author(s):  
Kathleen Sell ◽  
Erik-H. Saenger ◽  
Andrzej Falenty ◽  
Marwen Chaouachi ◽  
David Haberthür ◽  
...  

Abstract. To date, very little is known about the distribution of gas hydrates in sedimentary matrices and the resulting matrix-pore network affecting the seismic properties at low hydrate concentration. Digital rock physics offers a unique solution to this issue yet requires good quality, high resolution 3D representations for the accurate modelling of petrophysical and transport properties. Although such models are readily available via in-situ synchrotron radiation X-ray tomography the analysis of such data asks for complex workflows and high computational power to maintain valuable results. Here, we present a best-practise procedure complementing data from Chaouachi et al. (Geochemistry, Geophysics, Geosystems 2015, 16 (6), 1711–1722) with data post-processing, including image enhancement and segmentation as well as numerical simulations in 3D using the derived results as a direct model input. The method presented opens a path to a model-free deduction of the properties of gas hydrate bearing sediments when aiming for in-situ experiments linked to synchrotron-based tomography and 3D modelling.


Solid Earth ◽  
2016 ◽  
Vol 7 (4) ◽  
pp. 1243-1258 ◽  
Author(s):  
Kathleen Sell ◽  
Erik H. Saenger ◽  
Andrzej Falenty ◽  
Marwen Chaouachi ◽  
David Haberthür ◽  
...  

Abstract. To date, very little is known about the distribution of natural gas hydrates in sedimentary matrices and its influence on the seismic properties of the host rock, in particular at low hydrate concentration. Digital rock physics offers a unique approach to this issue yet requires good quality, high-resolution 3-D representations for the accurate modeling of petrophysical and transport properties. Although such models are readily available via in situ synchrotron radiation X-ray tomography, the analysis of such data asks for complex workflows and high computational power to maintain valuable results. Here, we present a best-practice procedure complementing data from Chaouachi et al. (2015) with data post-processing, including image enhancement and segmentation as well as exemplary numerical simulations of an acoustic wave propagation in 3-D using the derived results. A combination of the tomography and 3-D modeling opens a path to a more reliable deduction of properties of gas hydrate-bearing sediments without a reliance on idealized and frequently imprecise models.


AAPG Bulletin ◽  
2020 ◽  
Vol 104 (9) ◽  
pp. 1945-1969
Author(s):  
P. Kevin Meazell ◽  
Peter B. Flemings ◽  
Manasij Santra ◽  
Joel E. Johnson

AAPG Bulletin ◽  
2020 ◽  
Vol 104 (9) ◽  
pp. 1921-1944
Author(s):  
Manasij Santra ◽  
Peter B. Flemings ◽  
Erik Scott ◽  
P. Kevin Meazell

2017 ◽  
Vol 2017 (1) ◽  
pp. 1020-1040
Author(s):  
Gary Shigenaka ◽  
Buffy Meyer ◽  
Edward Overton ◽  
M. Scott Miles

2017-185 ABSTRACT The response technique of in-situ burning was used to great effect during the 2010 Deepwater Horizon oil spill in the Gulf of Mexico. An estimated 220,000-310,000 bbl of surface oil was consumed by operational in-situ burn activities. Post-burn residues were not recovered, as most were denser than seawater and sank after the burns. However, late in 2010, a relatively small deep-water shrimp fishery operating on the shelf north of the Macondo wellhead encountered tarballs on or near the bottom at around 200 m. We physically and chemically characterized samples of these submerged tarballs to confirm them as originating from Deepwater Horizon burns and to understand the features that distinguish them from other residual oil types encountered during the course of the spill response. The chance intersection between a commercial fishery and residues from the in-situ burn operations suggest that the fate of in-situ burn residue should be factored into future spill response tradeoff analyses.


Sign in / Sign up

Export Citation Format

Share Document